
COORDINATION PRACTICES WITHIN FLOSS
DEVELOPMENT TEAMS:

THE BUG FIXING PROCESS

Kevin Crowston1 and Barbara Scozzi2

1Syracuse University School of Information Studies
 4–206 Centre for Science and Technology
Syracuse, NY 13244–4100 crowston@syr.edu

2Politecnico di Bari - Dipartimento di Ingegneria Meccanica e Gestionale
Viale Iapigia 182 70126 Bari, Italy bscozzi@poliba.it

Abstract. Free/Libre Open Source Software (FLOSS) is primarily developed by distributed
teams. Developers contribute from around the world and coordinate their activity almost
exclusively by means of email and bulletin boards. FLOSS development teams some how
profit from the advantages and evade the challenges of distributed software development.
Despite the relevance of the FLOSS both for research and practice, few studies have inves-
tigated the work practices adopted by these development teams. In this paper we investi-
gate the structure and the coordination practices adopted by development teams during
the bug-fixing process, which is considered one of main areas of FLOSS project success. In
particular, based on a codification of the messages recorded in the bug tracking system of
four projects, we identify the accomplished tasks, the adopted coordination mechanisms,
and the role undertaken by both the FLOSS development team and the FLOSS community.
We conclude with suggestions for further research.

1 INTRODUCTION

In this paper, we investigate the coordination practices for software bug fixing
used in Free/Libre Open Source Software (FLOSS) development teams. FLOSS is a
broad term used to embrace software developed and released under an “open source”
license allowing inspection, modification and redistribution of the software’s source
without charge. There are thousands of FLOSS projects, spanning a wide range of
applications. Due to their size, success and influence, the Linux operating system and
the Apache Web Server (and related projects) are the most well known, but hundreds of
others are in widespread use, including projects on Internet infrastructure (e.g., send-
mail, bind), user applications (e.g., Mozilla, OpenOffice) and programming languages
(e.g., Perl, Python, gcc).

FLOSS development projects represent an interesting investigation area for re-
searchers interested in the analysis of coordination practices within distributed teams.
Many FLOSS development teams seem to benefit from the advantages of distributed
work without suffering from its drawbacks, such as difficulties in coordination and
knowledge transfer. Intriguingly, many traditional coordination mechanisms seem not
to be used by FLOSS development teams [1]. Yet, “little is known about how people

in these communities coordinate software development across different settings, or
about what software processes, work practices, and organizational contexts are neces-
sary to their success” [2]. Given the economic, legal and social implication, an analy-
sis of the coordination practices of FLOSS teams could be useful to better understand
the FLOSS phenomenon per se. As well, distributed teams of all sorts are increas-
ingly used in many organizations. The analysis of practices adopted by FLOSS teams
could be useful to managers considering adoption of this organizational form.

In the paper, coordination practices in FLOSS development processes are analyzed
by adopting a process theory, i.e. we investigate which tasks are accomplished, how
and by whom they are assigned, coordinate, and performed. To understand the projects’
coordination practices, we selected four representative FLOSS projects and inductively
coded the steps involved in fixing various bugs as recorded in the projects’ bug track-
ing systems to reveal the nature of the processes adopted. We decided to examine the
bug fixing process for three reasons. First, bug fixing provides “a microcosm of coor-
dination problems” [3]. Second, a quick response to bugs has been mentioned as a
particular strength of the FLOSS process: as Raymond [4] puts it, “given enough
eyeballs, all bugs are shallow”. Finally, it is a process that involves the entire devel-
oper community and thus poses particular coordination problems.

To ground our discussion, we will first briefly introduce the bug fixing process,
which consists of the tasks needed to correct software bugs. Crowston [3] described the
bug fixing process observed at a commercial software company (to our knowledge, no
description of the bug fixing process as performed in distributed teams is provided in
the literature).

The process is started by a customer who finds a problem when using a software
system. The problem is reported (sometimes automatically or by the customer) to the
company’s response center. In the attempt to solve the problem, personnel in the
center look in a database of known bugs. If a match is found, the fix is returned to the
customer; otherwise, after identifying the affected product, the bug report is forwarded
to an engineer in the marketing center. The assigned engineer tries to reproduce the
problem and identify the cause (possibly requesting additional information from the
reporter to do so). If the bug is real, the bug report is forwarded to the manager re-
sponsible for the module affected by the bug. The manager then assigns the bug to the
software engineer responsible for that module. The software engineering diagnoses the
problem (if she finds that the problem is in a different module, the report is forwarded
to the right engineer) and designs a fix. The proposed fix is shared with other engi-
neers responsible for modules that might be affected. When the feedback from those
engineers is positive, the proposed design is transformed into lines of code. If changes
in other module are needed, the software engineer also asks the responsible engineers
for changes. The proposed fix is then tested, the eventual changed modules are sent to
the integration manager. After approving, the integration manager recompiles the
system, tests the entire system and releases the new software in the form of a patch.

The remainder of the paper is organized as follows. In section 2 we stress the rele-
vance of process theory and explain why we adopted such a theoretical approach. The
research methodology adopted to study the bug fixing process is described in Section
3. In Section 4 we describe and discuss the study’s results. Finally, in Section 5 we
draw some conclusions and propose future research directions.

2 PROCESSES AS THEORY

Most theories in organizational and information system research are variance theo-
ries, comprising constructs or variables and propositions or hypotheses linking them.
Such theories predict the levels of dependent or outcome variables from the levels of
independent or predictor variables, where the predictors are seen as necessary and suffi-
cient for the outcomes. An alternative to a variance theory is a process theory [5].
Rather than relating levels of variables, process theories explain how outcomes of
interest develop through a sequence of events [6]. Typically, process theories are of
some transient process leading to exceptional outcomes, e.g., events leading up to an
organizational change or to acceptance of a system. However, we will focus instead on
what might be called “everyday” processes: those performed regularly to create an
organization’s products or services. ” For example, Sabherwal and Robey [7] described
and compared the processes of information systems development for 50 projects to
develop five clusters of similar processes.

Kaplan [8, p. 593] states that process theories can be “valuable aids in understand-
ing issues pertaining to designing and implementing information systems, assessing
their impacts, and anticipating and managing the processes of change associated with
them”. The main advantage of process theories is that they can deal with more com-
plex causal relationships than variance theories, and provide an explanation of how the
inputs and outputs are related, rather than simply noting the relationship. Represent-
ing a process as a sequence of activities provides insight into the linkage between
individual work and processes, since individuals perform the various activities that
comprise the process. As individuals change what they do, they change how they
perform these activities and thus their participation in the process. Conversely, proc-
ess changes demand different performances from individuals. Information and Commu-
nication Technologies use might simply make individuals more efficient or effective
at the activities they have always performed. However, an interesting class of impacts
involves changing which individuals perform which activities and how activities are
coordinated. The analysis is the aim of this paper.

3 RESEARCH METHODOLOGY

To address our research question, how are bug fixes coordinated in FLOSS pro-
jects, a multiple case study of different FLOSS projects has been carried out. In this
section, we discuss sample selection and data sources, data collection and data analysis.
Projects to be studied have been selected among those available on Sourceforge,
(http://sourceforge .net/), a web-based system that supports more than 75,000 FLOSS
projects. Projects have access to a home page, a source code control system (CVS),
mailing lists, a bug tracking system, software to manage activities and permanent file
database. We selected several projects to study in-depth by employing a theoretical
sampling strategy. First, we chose projects for which data we need for our analysis are
publicly available (not all projects allow public access to the bug tracking system).
Second, we chose teams with more than 8 members, since smaller projects seemed

less likely to experience significant
coordination problems. Finally, in
the attempt to link coordination
practices to project success, we
tried to select more and less suc-
cessful development teams. To this
aim we used the definitions of
success proposed by [9], who sug-
gest that a project is successful if it
is active, the resulting software is
downloaded and used and the code
matures. Based on these criteria, 4
FLOSS projects were selected for
analysis. A brief description of the
projects is reported in Table 1.
Based on the definition proposed in
[9], Kicq, Gaim and PhPmyAdmin
were chosen as examples of effec-
tive projects because they are ac-
tive, the resulting software is
downloaded and used and the code
has been maturing. DynAPI was
chosen as an example of a less
effective project because the num-
ber of downloads, programming
activity and rapidly decreased in the
months leading up to the study.

We collected data indicative of
the success of each project, such as
its level of activity, number of
downloads and development status. We then collected data from the archives of the bug
tracking system, the tool used to support the bug fixing process [10].. These data are
useful because they are unobtrusive measures of the team’s behaviors [11]. An exam-
ple bug report in shown in Figure 1. In the bug tracking system, each bug has a re-
quest ID, a summary (what the bug is about), a category (the kind of bug, e.g., sys-
tem, interface), the name of the team member (or user) who submitted it, and the
name of the team member it was assigned to. As well, individuals can post messages
regarding the bug, such as further symptoms, requests for more information, etc.
From this system, we extracted data about who submitted the bugs, who fixed them
and the sequence of messages involved in the fix. By examining the name of the mes-
sages senders, we can identify the project and community members who are involved
in the bug fixing process. Demographic information for the projects and developers
and data from the bug tracking system were collected in the period 17–24 November
2002. We examined 31 closed bugs for Kicq, 95 closed bugs for DynAPI, 51 bugs for
Gaim and 51 for PhPMyAdmin.

Fig. 1. Example bug report and followup mes-
sages (adapted from http://sourceforge.net/
tracker/index.php?func=detail&aid=206585
&group_id=332&atid=100332)

Table 1. Four examined projects.

KICQ DynAPI Gaim PhpMyAdmin
Goal ICQ client

for the KDE
project

Enhance the
DynAPI Dy-
namic HTML
Library

Multi-platform
AIM client

Web-based data-
base administra-
tion

Development
Status

4 Beta, 5
Production
Stable

5 Production
Stable

5 Production
Stable

5 Production
Stable

License GPL LGPL, GPL GPL GPL
Open bugs
/total number
of bugs

26 /88 45/220 269 /1499 29 /639

Team members 9 11 9 9

For each of the selected bug reports, we carefully examined the text of the ex-
changed messages to identify the task carried out by each sender. By inductively coding
the text of the messages in the bug tracking systems of the four projects, we identified
the different elementary tasks carried out during the bug fixing process. For example
the message:

“I’ve been getting this same error every FIRST time I load the dynapi in NS
(win32). After reloading, it will work… loading/init problem?”

Table 2. Coded tasks in the bug fixing process

1.0.0 Submit (S)
1.1.0 Submit bug (code errors)
 1.1.1 Submit symptoms
 1.1.2 Provide code back trace (BT)
 1.2.0 Submit problems
 1.2.1 Submit incompatibility problems

(NC)
2.0.0. Assign
2.1.0 Bug self-assignment (A*)
2.2.0 Bug assignment (A)
3.0.0 Analyze
3.1.0 Contribute to bug identification

3.1.1Report similar problems (R)
3.1.2 Share opinions about the bug
(T)

3.2.0 Verify impossibility to fix the bug
3.2.1 Verify bug already fixed (AF)
3.2.2.Verify bug irreproducibility
(NR)
3.2.3 Verify need for a not yet sup-
ported function (NS)
3.2.4 Verify identified bug as inten-
tionally introduced (NCP)

3.3.0 Ask for more details
3.3.1 Ask for Code version/command
line (V)

3.3.2 Ask for code back
trace/examples (RBT/E)

3.4.0 Identify bug causes (G)
3.4.1 Identify and explain error (EE)
3.4.2 Identify and explain bug causes
different from code (PNC)

4.0.0 Fix
4.1.0 Propose temporary solutions (AC)
4.2.0 Provide problem solution (SP)
4.3.0 Provide debugging code (F)
5.0.0 Test & Post
5.1.0 Test/approve bug solution

5.1.1 Verify application correctness
W

5.2.0 Post patches (PP)
5.3.0 Identify further problems with pro-

posed patch (FNW)
6.0.0 Close
6.1.0 Close fixed bug/problem
6.2.0 Closed not fixed bug/problems

6.2.1 Close irreproducible bug (CNR)
and close it
6.2.2 Close bug that asks for not yet
supported function (CNS)
6.2.3 Close bug identified as inten-
tionally introduced (CNCP)

B u g
ID

Summary Assigned to Submitter

206585 crash with
icq chat

bills khub

Task Person Comments
(S) Khub
(V) denis asks what version khub is running
(R) robvnl reports the same problem as khub. submits information about the

operating systems and the libraries (Qt/kde)
(V denis asks again what version both users are running
(W) khub reports the most recent version of kicq works
(T) robvnl reports version information
(C) bug closed

Fig. 2. Coded version of bug report in Fig.1.

represents a report submitted by a user (someone other than the person who initially
identified and submitted the bug). Such a user contributed to bug analysis. In particu-
lar, her message has been coded as “report similar problems”. Table 2 shows the list
of task types that were developed for the coding. The lowest level elementary task
types were successively grouped into 6 main types of tasks, namely Submit, Assign,
Analyze, Fix, Test & Post, and Close.

Each process starts with a bug submission (S) and finishes with bug closing (C).
Submitters may submit problems/symptoms associated with bugs (Ss), incompatibil-
ity problems (NC) or/and also provide information about code back trace (BT). After
submission, the team’s project managers or administrators should assign the bug to
someone to be fixed ((A); (A*) if they self-assign the bug). Other members of the
community may report similar problems they encountered (R), discuss bug causes
(T), identify bug causes (G) and/or verify the impossibility of fixing the bug. Bug
fixing may be followed by a test and the submission of a patch (TP). This is a coordi-
nation task. However, as later explained, in the examined projects, this type of task is
often neglected. In most cases, but not always, team members spontaneously decide to
fix (F) the bug. Before doing that, they often ask more information to better under-
stand bug causes (An). The bug is then closed (C). Bugs can may be closed either
because they have been fixed or they cannot be fixed (i.e. they are not reproducible
(CNR), involve functions not supported yet (CNS) and/or are intentionally introduced
to add new functionality in the future (CNCP). Notice that the closing activity is
usually attributed to a particular user.

A complete example of the coded version of a bug report (the one from Figure 1)
is shown in Figure 2.

4 RESULTS

In Table 3, we describe the occurrences per task for the four projects and the aver-
age number of tasks to fix bugs. A χ2 test shows a significant difference in the distri-
bution of task types across projects (p<0.001). For all projects, the most common
task sequence is submit, analyze, fix, close. In longer sequences, it is usually the
analyze task that is repeated more times. Data about the percentage of submitted,
assigned and fixed bugs both by team members and members external to the team for
each project are reported in Table 4. Table 5 provides some observations of the nature
of the bugs fixing process in the four projects.

5 DISCUSSION

In the traditional bug fixing process, several tasks are coordination tasks. The
search for duplicate bugs as well as the numerous forward and verify tasks are coordi-
nation mechanisms used to manage a dependency (Malone and Crowston’s [12] defini-
tion of coordination). Database searching manages a dependency between two tasks

Table 3. Task occurrences and average number of tasks per projects.

Task
Project (bugs)

(S) (Ag) (An) (F) (TP) (C)
Avr. tasks per

bug

KICQ (31) 44 3 23 23 1 31 3.9
Dynapi (95) 121 0 83 57 16 95 4
Gaim (51) 56 0 65 29 12 51 4
Phpmyadmin (51) 53 1 69 49 10 51 4.4

Table 4. The bug fixing process: Main results.

Kicq DynAPI Gaim PhpMyAdmin
Bugs submitted by team mem-
bers

9.7% 21.1% 0% 21.6%

Bugs submitted by members
external to the team

90.3% 78.9% 100% 78.4%

Bug assigned/self-assigned
of which:

9.7% 0% 0% 2%

Assigned to team members 0% - - 100%
Self assigned 66% 0%
Assigned to members exter-
nal to the team

33% - - 0%

Bug fixed, of which: 74% 60% 56.9% 96%
Fixed by team members 70% 35.1% 79.3% 89.8%
Bug fixed by members exter-
nal to the team

30% 64.9% 20.7% 8.2%

that can have the same outcome. Forwarding and verifying tasks are coordination
mechanisms used to manage dependency between a task and the actor appropriate to
perform that task. In a large software company, many actors are involved, each of
them carry out a very specialized task.

The above analysis provides some interesting insights on the bug fixing process
for FLOSS development. Process sequences are averagely quite short (four tasks) and
they seem to be quite similar: submit, analyze, fix and close. As shown in Table 3,
formal task assignments are quite uncommon. Only few bugs are formally assigned.
Such a coordination activity seems rather to spontaneously emerge. Based on bug
description and analysis, those who have the competencies autonomously decide to fix
the bug. That activity is facilitated by the supplied backtrace and analysis often under-
taken by several contributors. The lack of assignment is one of main difference differ-
entiating the process as it occurs in FLOSS development team from the traditional
commercial process. As briefly described in section 1, within traditional processes
assignments are coordination activities frequently carried out.

Testing is also quite an uncommon task in the logs. Most of the proposed fixes
are directly posted presumably after personal testing. If no one describes the emergence
of new problems with these fixes, they are automatically posted and the attendant bug
closed. It is important also to note that some of the posted problems do not represent
real bugs, so they are directly closed with that explanation.

A further difference is that in these projects, the process is performed by few team
members (usually not more that two or three) working with a member of the larger
community. Team members (usually project managers or administrators) are most
involved in bug fixing. Surprisingly, only a few developers (of the team) are involved
in the process. Most of the community is composed by active users who submit bugs
or contribute to their analysis. However, only two or three members of the involved
community are involved in fixing tasks and can be referred to as co-developers.
We also noted striking differences in the level of contribution to the process. The
most active users in the projects carried out most of the tasks while most others con-
tributed only once or twice. As expected, the most widely dispersed type of action was
submitting a bug, while diagnosis and bug fixing activities were concentrated among a
few individuals.

As we have few members of the team and few members of the community (co-
developers) mostly involved in bug fixing and many users/members of the commu-
nity (active users) mostly involved in bug submission, the organizational models
proposed in the literature [13] seem to be valid for the bug fixing process. It would be
interesting to further investigate if those, among the active users also involved in bug
fixing, also contribute to software coding.

Also, based on the analysis of task carried out and the attendant coordination
mechanisms we argue that the bazaar metaphor proposed by [4] to describe the OSS
organization structure is still valid for the bug fixing process. As in a bazaar, the
actors involved in the process autonomously decide the schedule and contribution
modes for software development, making a central coordination action superfluous.

As apparently less successful, we expected to find that DynAPI had a smaller ac-
tive user base than the other projects. However, as noted above, data shows the oppo-
site. It seems likely that our estimation of the success of the two projects based on
activity levels is mistaken, or at least an over-simplification. We plan to further ex-

plore this hypothesis by examining a larger number of projects (e.g., to examine the
change in the population over time).
Table 5. Observed characteristics of the bug fixing processes in the four projects.

Kicq DynAPI Gaim PhpMyAdmin
Min task
sequence 2 2 2 2

Max task
sequence 6 12 6 11

Uncommon
tasks

Bug assign-
ment/ 3

Bug assign-
ment/ 0

Bug assign-
ment/ 0

Bug assign-
ment/ 1

Community
members 18 53 23 20

Team mem-
bers’ partici-
pation

2 of 9 6 of 11 3 of 9 4 of 10

Most active
team mem-
bers
Role/ name

Project mgr
denis
Developer
davidvh

Admin
rainwater
Ext member
dcpascal also
active

Admin-
developer
warmenhoven
Developer
robflynn

Admin-
developer loic1
Admin-
developer lem9

Max posting
by single
community
member

2 6 4 3

Not fixable
bug closed 8 5 5 -

6 CONCLUSIONS

We investigated the coordination practices adopted within four FLOSS develop-
ment teams. In particular, we analyzed the bug fixing process, which is considered
critical for FLOSS’ success. The paper provided some interesting results. The process
is mostly sequential and composed of few steps, namely submit, analyze, fix and
close. Second, the process seems to lack traditional coordination mechanisms such as
task assignment. As a consequence, labour is not equally distributed among process
actors. Few contribute heavily to all tasks whereas the majority just submit one or
two bugs. Third, the organization structure involved in the process resembles the one
proposed in the literature for the FLOSS development process. Few actors (core de-
velopers), usually team project managers or administrators, are mostly involved in
bug fixing bugs. Most of the involved actors are instead active users, who just sub-
mit bug reports. In between are few actors, external to the team, who submit bugs and
contribute to fixing them. No evident association was found among coordination
practices and project success.

The paper contributes to fill a gap in the literature by providing a picture of the
coordination practices adopted within FLOSS development team. Besides, the paper

proposes an innovative research methodology (for the analysis of coordination prac-
tices FLOSS development teams) based on the collection of process data by electronic
archives, the codification of message texts, and the analysis of codified information
supported by the coordination theory. However, the results are based on few projects,
so further analyses are necessary to validate them. In the future, we intend to deepen
the knowledge about the coordination practices adopted by the four projects by di-
rectly interviewing some of the involved actors.

REFERENCES

1. Mockus, A., R.T. Fielding, and J.D. Herbsleb, Two Case Studies Of Open Source Soft-
ware Development: Apache And Mozilla. ACM Transactions on Software Engineering
and Methodology, 2002. 11(3): p. 309–346.

2. Scacchi, W. Software Development Practices in Open Software Development Communi-
ties: A Comparative Case Study (Position Paper). 2002.

3. Crowston, K., A coordination theory approach to organizational process design.
Organization Science, 1997. 8(2): p. 157–175.

4. Raymond, E.S., The cathedral and the bazaar. First Monday, 1998. 3(3).
5. Markus, M.L. and D. Robey, Information technology and organizational change:

Causal structure in theory and research. Management Science, 1988. 34(5): p.
583–598.

6. Mohr, L.B., Explaining Organizational Behavior: The Limits and Possibilities of
Theory and Research. 1982, San Francisco: Jossey-Bass.

7. Sabherwal, R. and D. Robey, Reconciling variance and process strategies for studying
information system development. Information Systems Research, 1995. 6(4): p.
303–327.

8. Kaplan, B., Models of change and information systems research, in Information Sys-
tems Research: Contemporary Approaches and Emergent Traditions, H.-E. Nissen,
H.K. Klein, and R. Hirschheim, Editors. 1991, Elsevier Science Publishers: Amsterdam.
p. 593–611.

9. Crowston, K. and B. Scozzi, Open source software projects as virtual organizations:
Competency rallying for software development. IEE Proceedings Software, 2002.
149(1): p. 3–17.

10. Herbsleb, J.D., et al., An Empirical Study of Global Software Development: Distance
and Speed, in Proceedings of the International Conference on Software Engineering
(ICSE 2001). 2001: Toronto, Canada. p. 81–90.

11. Webb, E. and K.E. Weick, Unobtrusive measures in organizational theory: A reminder.
Administrative Science Quarterly, 1979. 24(4): p. 650–659.

12. Malone, T.W. and K. Crowston, The interdisciplinary study of coordination. Comput-
ing Surveys, 1994. 26(1): p. 87–119.

13. Cox, A., Cathedrals, Bazaars and the Town Council. 1998.

