

HD28
.M414

no, iz^i-

%

$|FEB 13 1991
')

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

Modelling Coordination in Organizations

Kevin Crowston

Center for Coordination Science

MTT Sloan School of Management

December 1990

Sloan WP 3228-90-MSA CCS WP 115

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

Modelling Coordination in Organizations

Kevin Crowston

Center for Coordination Science

MTT Sloan School of Management

December 1990

Sloan WP 3228-90-MSA CCS WP 115

To appear in M. Masuch and G. Massimo (Eds.), Artificial Intelligence in

Organization and Management Theory. Amsterdam: Elsevier, 1991.

I.IT. UBRAR1B

i \y:

3 * \<&

MODELLING COORDINATION
IN ORGANIZATIONS

Kevin Crowston^

Center for Coordination Science

Sloan School ofManagement

Massachusetts Institute of Technology

Introduction

What good are organizations? Obviously, organizations exist for many
reasons. One of the most important is to channel the efforts of the organization's

members in ways that allow the organization to accomplish things that no

individual working alone could do. For example, a computer operating system

is such a complex product that no one individual can be said to know how to

design or build one, yet several organizations routinely do exactly that. This

ability has a cost; much of the work done by members of a software company has

little to do with actually writing software. Instead, these workers spend their

time coordinating their actions and the actions of others. As yet, however, we
have only a vague understanding of what coordination work is or how it is

useful.

The end goal of my research is to provide a more principled definition of

coordination and coordination work. To do so, however, requires the

development of better analysis techniques. In this paper I will present such a

technique and briefly discuss its implications for study of organizations and

coordination.

Coordination seems to be primarily an information processing task. One

method other information-processing-based disciplines have used to gain insight

into complex behaviours is to imagine how a computer could be programmed to

reproduce them. In cognitive psychology, for example, computer models of

learning or memory have been used to make theories about human information

processing concrete and to generate further empirically testable hypotheses.

1 Author's present address: E53-322, MIT, Cambridge, MA 02139 USA

Electronic mail (internet): kevin@xv.mit.edu

Telephone: +1(617)253-2781

Fax: +1 (617) 253-7579

Cyert and March (1963) took a similar approach to the study of organizations. In

their analysis of the process firms used to make pricing decisions, the "process is

specified by drawing a flow diagram and executing a computer program that

simulates the process in some detail" (p. 2).

Computer models of organizations can provide many benefits for the

study of coordination in organizations. First, artificial intelligence research and

in particular the developing field of distributed artificial intelligence (DAI, e.g.,

Huhns, 1987; Bond and Gasser, 1988; Gasser and Huhns, 1989; Huhns and

Gasser, 1989) can contribute interesting formalisms for understanding and

representing the actions of human organizations. Second, computer systems are

a much more tractable method for investigating organizations. For example, it is

possible to perform true experiments comparing systems of coordination using

computer models (e.g., Durfee, 1988). In a sense, DAI is (or can be) the

experimental branch of organizational science.

In this paper, I concentrate primarily on the first of these potential

contributions. Using ideas from DAI, I have developed a technique for

modelling the coordination processes of a group performing a complex task. I

focus in particular on the additional knowledge an individual working in a

group needs to know to be an effective member of the group beyond simply

knowing how to do his or her job.

Example: Computer software company

The technique I will be describing was developed in the course of a field

study of the engineering change processes in three large manufacturing

companies. To clarify this context, I will briefly describe one of these companies,

which will provide examples for the rest of the paper.

Description of site

The company I studied is a manufacturer of computer hardware and

system software; the particular group I studied was responsible for the

development of the kernel of the operating system, a total of about one million

lines of code in a high-level language. The group had a total of about 200-300

programmers, divided between 8 development groups and various support

groups. The operating system was divided into numerous modules; each

software engineer was responsible for a few of these modules.

Overview of change process

Lientz and Swanson (1980) describe three kinds of software changes:

corrective, perfective and adaptive. Corrective changes are those made to fix

problems with the software, defined by this company as disagreements between

the documented and actual behaviour of the software. (Note that these problems

may be fixed by changing either the documentation or the code.) Perfective

changes are those made to improve the software (for example, by improving

performance) without adding new functionality. The group also made adaptive

changes, adding new functionality for future releases, but I did not study these

changes. However, the organization was clearly shaped in large part by the need

to perform these changes.

The basic flow of a change is shown in Figure 1. Changes are made in

response to problem reports, which come from a testing group and from end

users of the operating system. These reports are filtered and genuine and novel

problems are routed to the software engineer responsible for the apparently

affected module. This engineer, in consultation with other engineers, develops a

fix for the problem. The fix may require changes to other modules; those changes

are made by the engineers responsible for the other modules. Customers get

problem fixes either periodically as part of a new release of the software or, for

more urgent problems, as a separate patch file that can be loaded on top of the

current release.

Figure 1. Overview of change process

Underlying theoretical assumptions

As is apparent even from this brief description of the example research

site, the change process involves many actors and subtasks. Models are useful

because they can be used to abstract from and simplify complex systems such as

this one. As Yourdon notes, "we can construct models in such a way as to

highlight, or emphasize, certain critical features of a system, while

simultaneously de-emphasizing other aspects of the system" (1989, p.65). The

key issue in modelling, then, is the choice of which elements of the observed

phenomena to include and which to omit. Which variables should appear in the

model? How should they appear? What are the appropriate values? Different

modellers have chosen different answers to these questions. To suggest which

features are important to include and which are unimportant details, it is

necessary to have a strong theoretical view of the organization.

I adopted the information processing (IP) view of organizations (e.g.,

March and Simon, 1958; Galbraith, 1977; Tushman and Nadler, 1978) because of

its focus on how organizations process information. Tushman and Nadler (1978,

p. 292) outlined three basic assumptions of IP theories: (1) organizations must

deal with work-related uncertainty; (2) organizations can fruitfully be seen as

information processing systems; and (3) organizations are composed of

individual actors. In this view, organizational structure is the pattern and

content of the information flowing between the actors and the way they process

this information. I adopted a quite reductionistic version of this view, focusing

exclusively on modelling the information-processing behaviour of the individual

actors that comprise the organization and the communications between them

(Prietula, Beauclair, and Lerch, 1990).

In order to provide a focus for and boundaries around the models, I

assumed that the organization had a clear goal it was trying to achieve. In the

example case, the goal seems to be to implement engineering changes to fix

existing problems without introducing new problems. I am not claiming that the

actors perform only this one particular task; dearly actors have many goals, both

organizational and individual. However, I am analyzing the organization's

performance with respect to only certain of these goals. These goals are

attributed to the organization by the analyst for the purposes of a particular

study; other analysts or the actors themselves may not necessarily agree that they

are the correct (or most interesting) goals. For example, an analyst might choose

to view the goal of a market as the efficient allocation of scarce resources to

different actors. None of the actors in the market necessarily have "efficient

allocation of resources" as a goal, but it still makes sense to ask how efficient a

particular market structure is for achieving that goal.

In the rest of this paper I will describe the steps I went through to model

the organizations I studied. The description will be illustrated with examples

from the case site described above. I will conclude by discussing possible uses

for such models.

Data-flow models

Because coordination seems to be primarily an information-processing

task, I wanted first to clearly identify the information processing done by the

members of the organization. As in an earlier study (Crowston, Malone, and Lin,

1987), I approached this problem by developing what I call data-flow models.

These models are similar to data-flow diagrams (see, for example, Yourdon,

1989) or the structured analysis and design technique (see Marca and McGowan,

1988).

Data-flow models include two major elements: actors and messages.

Actors send messages to other actors. When an actor receives a message, it takes

some action, which may include sending additional messages to other actors.

Each kind of actor understands and reacts to a different set of messages. I use the

term "message" here in an abstract sense that includes any kind of

communication, verbal as well as paper or electronic. The resulting model is

similar to a program written in an object-oriented language (e.g., Stefik and

Bobrow, 1986). The object-oriented metaphor suggests creating a hierarchy of

actor types as a way to simplify the description of different actors and to

highlight their similarities; this method was used in (Crowston et al, 1987).

For example, there might be a number of individuals designing modules

of an operating system, all working in roughly the same way and using the same

kinds of information; each would be modelled as an example of a "software

engineering actor". A testing actor works differently and would be analyzed

separately. Engineering actors receive notifications of changes in other modules

from other engineering actors or of problems in their modules from testing

actors. When an engineering actor receives a change notice, for example, it first

determines if the notice affects its modules, based on its knowledge of the

connections between modules; if it does, the actor then makes any necessary

changes and send the revised module and its own change notices to other actors.

The product of this analysis is a specification of the types of messages and

the behaviour of the actors, in principle in precise enough detail to construct a

computational model of the organization. In presenting the model, I give only a

description of the different types of actors (the classes) and the actions they take

for each kind of message they understand; I do not present a full instantiation of

the model. A working simulation would have an object of the appropriate class

to represent each actor in the modelled organization.

Data collection

Perhaps the most important function of the data-flow models is to provide

a focus for data collection. In developing the models presented here, I used an

iterative approach, sometimes called negative case study method (Kidder, 1981),

switching between data collection and model development. The initial round of

data collection served as the basis for an initial model. Constructing this model

would reveal omissions in the data, for example, places where it was not clear

how an actor would react to some message or from whom a particular piece of

information came. These omissions or ambiguities served as the basis for further

data collection.

To collect data for these models we can make use of techniques developed

in fields ranging from ethnography to expert system knowledge acquisition (e.g.,

Ericsson and Simon, 1984). In my case, most of the data collection was done in

one hour or longer semi-structured interviews with various members of the

organization. As March and Simon (1958) pointed out, "most programs are

stored in the minds of the employees who carry them out, or in the minds of their

superiors, subordinates or associates. For many purposes, the simplest and most

accurate way to discover what a person does is to ask him" (p. 142). Data was

collected by asking subjects questions such as: (1) what kinds of information

they receive; (2) from whom they receive it; (3) how they receive it (e.g., from tele-

phone calls, memos or computer systems); (4) how they process the different

kinds of information; and (5) to whom they send messages as a result. I

attempted to behaviourally ground these questions by asking interviewees to

talk about the events that had recently occurred and using them as a basis for

further questions. For example, I asked some individuals to go through their in-

boxes and describe the different kinds of documents they found and what they

did with each one (e.g., Brobst, Malone, Grant, and Cohen, 1986; Malone, Grant,

Turbak, Brobst, and Cohen, 1987a).

Relying on interviews alone can introduce some biases. First, people do

not always say what they really think. Some interviews were conducted in the

presence of other employees of the company, so interviewees might have been

tempted to say what they thought they should say (the "company line"), what

they thought I wanted to hear or what they thought would make them or the

company look best. Second, individuals sometimes might really not know the

answer. I tried to control for some of these biases by checking reported data with

other informants. I also attempted to collect more objective information, such as

data about: (1) the types of information stored in computer systems; (2) the use

of computer systems; (3) names on memo distribution lists; or (4) examples of

forms used.

Another source of data was documents describing standard procedures or

individual jobs, such as training manuals. March and Simon (1958) suggest that

these documents are created for three different reasons: (1) as instructions for

individuals doing the job, (2) as descriptions for new members of the group and

(3) to legitimize or formalize the procedure (p. 142). They note that

interpretation of these documents depends on the purpose they were intended to

serve.

Finally, to get a better sense of the kinds of communication individuals

actually used, I observed some individuals during the course of a typical work

day. For example, in one site I followed engineers for a day, during which I sat

in on scheduled and unscheduled meetings and took notes about the kinds of

people the engineer interacted with and the types of information exchanged.

It is interesting to note that the process apparently followed frequently

differed from the formal process. For example, at one site, engineers received a

listing of all approved changes, but the official list merely confirmed that the

changes had been approved. In order to react to a change, the engineer had to be

warned of it well in advance of its appearance on the official list. This warning

seemed to happen primarily through an informal process. It was this informal

process that I attempted to model.

Example

An overview of the information flow model for the software change

process is shown in Figure 2. Messages flow generally from top to bottom. Only

the primary information flow is shown in the diagram; messages do occasionally

skip levels or flow backwards to provide feedback, but these links are not shown.

Six different kinds of actors are shown: customers, the response centre,

marketing engineers, engineering group managers, software engineers and

Figure 2. Overview of information-flow for example case.

Customers

I
Response

Centre

I
Marketing

engineer;ine

Engineering

group

managern
j»g

Software

engineer

I
Testing &
Integration

Customers

testing and integration. Note that these "actors" include both individuals, such

as customers or software engineers, and groups, such as the response centre or

testing and integration. I belive that the ability to mix levels of analysis in this

way is an important advantage of this sort of modelling. The response centre (to

pick a group) is, of course, composed of many individuals and has its own
somewhat complex internal structure and processes. However, for the purposes

of analyzing the engineering change process, I decided that the details of this

internal structure were less interesting than, for example, the interactions

between engineers. I therefore chose to hide the internal details of the response

centre in a black box, modelling it as a single actor, while focusing in more detail

on the interactions between engineers. This choice would be made differently if

the model were used for to investigate other questions. For example, knowing

the internal structure of the response centre might be quite important for

analyzing cases where customer complaints seemed to get lost or misrouted.

Obviously, the model is too big to discuss in detail in the space available.

I will concentrate, therefore, on the two highlighted parts of the process: the

interactions between a customer and the response centre and between software

engineers. These parts were chosen because they give a good feel for how the

modelling process works and will be reasonably familiar to readers acquainted

with the process of software maintenance.

Tables 1 and 2 show the messages understood by the response centre and

software engineers. Customers send Problem Report messages to the response

centre. When the response centre receives the message, it attempts to determine

if the problem is due to a customer misunderstanding; if it is, then an explanation

can be immediately returned. If the reported problem duplicates a known
problem, one that appears in a database of previous calls or reported problems,

then the earlier response can be reused. If the problem can not be solved in this

way, then the Problem Report message is resent to the marketing engineer for the

product.

Software engineers understand a wider variety of messages. Initially they

receive Problem Report messages from the manager of their group (who in turn

receives them from the marketing engineer). Engineers first attempt to locate the

problem in a particular module. If it appears that the problem is actually in a

module other than one for which the engineer is responsible, then the Problem

Report message is resent to the engineer responsible for the apparently affected

module. Otherwise, the engineer puts the problem on a queue of problems to be

fixed and picks the most important problem to work on next.

Engineers usually discuss proposed changes with each other before they

are implemented. This process is modelled as an exchange of Proposed Solution

and Comment messages. (Note that we are attempting to model the kinds of

interactions necessary, not the actual content of any particular exchange.) When
an engineer has developed a solution for a problem, he or she determines which

modules and therefore which engineers are likely to be affected and send those

engineers a Proposed Solution message. The engineers then return Comment

Table 1. Messages understood and actions taken by Response Centre.

Sender Message Recipient Actions taken

Customer Problem Response if customer misunderstanding, return explanation

^^
if duplicate problem, return known solution

otherwise, send Problem report message to the marketing

engineer for this product

messages. If the comments are positive, then the engineer implements the

change (that is, actually writes the code and changes the module); otherwise, he

or she revises the proposed solution and goes through the comment process

again.

Once the change has been implemented, the changed module is tested and

submitted to the testing and integration group to be included in the next release

of the system. High priority changes (the priority is set by the marketing

engineer based on the customer's report) may be issued as a patch file by the

patch coordinator. These processes are modelled by having the engineer send a

Solution message to the appropriate actors.

Implementation of a change may require other engineers to change their

modules. For example, new functionality may be required from another module

to support the change. This process is modelled by having the first engineer

send Problem Report messages asking the engineers responsible for the affected

Table 2. Messages understood and actions taken by Software engineers.

Software locate problem

°
if in different module, send Problem report message to

appropriate engineer

prioritize the problem, and work on most important

determine the change necessary

send Proposed solution message to affected engineers and

wait for comments.

Software Proposed Software return appropriate Comment message

engineer solution engineer

Software Comment Software if negative, then revise and resend Proposed solution

engineer engineer message

otherwise, implement proposed solution

send Problem report message to engineers requesting

necessary changes to other modules

send Solution message to Integration

if problem is high priority, send Solution message to Patch

coordinator

Software

modules for the appropriate changes. Those engineers independently submit

their changes directly to the testing and integration group or to the patch

coordinator with an indication that they are part of the initial change.

Intentional models

While the information-flow models usefully abstract the communication

between actors and the way they process this information, they do not

adequately explain why the actors communicate in the ways they do and not in

other plausible ways. As Newell and Simon (1972) noted in their analysis of

individual problem solving, the flowcharts just appear, with no real explanation

as to their origins. Following their example, the next step of my analysis was to

develop a problem-solving model for each actor that generates the observed

communications. I call these models intentional models, since they capture the

intentions behind the actors' actions.

To do this modelling, I again drew on ideas from DAI. I modelled each

actor as an independent goal-directed problem solver. Each actor is assumed to

have its own knowledge about the world; actors can communicate but do not

directly share memory. Each actor attempts to achieve its goals, given the state

of the world as it knows it, by taking actions that affect that state. To know to ask

another actor for help, actors must be able to reason about other actors'

knowledge and capabilities. I therefore represented each actors' goals,

capabilities and knowledge about task domain and its models of other actors.

Essentially, I attempted to reverse engineer the knowledge actors use from the

messages they send to other people.

I represented each actor's knowledge as a set of well-formed formulas in

first-order predicate calculus. Using logic as a basis for a knowledge

representation scheme is common in artificial intelligence research and although

it is not universally accepted, it is sufficient for my purposes and I will not

examine the alternatives here. (For a better defence of the utility of logic see

(Hayes, 1977; McDermott, 1978; Moore, 1982)). It should be noted that none of

my results depend crucially on the use of logic as a representation.

Representing knowledge about actions

In order to accomplish their goals, actors perform actions. For example,

the action Fix-symptoms(s) represents the actions of some actor developing a fix

11

for the symptoms S. Note that Fix-symptoms(s) represents the whole class of

actions of fixing symptoms.

Actions have preconditions which must be satisfied for the actor to be able

to perform the action. These actions fall into two classes: knowledge

preconditions and physical preconditions (Moore, 1979; Morgenstern, 1987;

Morgenstern, 1988).

Knowledge preconditions capture the idea that actors need knowledge in

order to perform actions. First, an actor must know how to perform an action, in

this case, how to fix symptoms. Some actions are primitive and can be

performed by all actors. More complex action may be performed only by actors

who know how to decompose the action into primitive actions. Second, an actor

must know the parameters of the action, in this case, the symptoms themselves.

Some actions have physical preconditions that must also be satisfied. For

example, finding a fix for the symptoms may require the use of a computer

terminal, being able to type or program, etc. For my examples, however,

physical preconditions are minimal and will not be discussed.

Once performed, actions have effects; actors use their knowledge of these

effects to reason about which actions to undertake to achieve their goals. Of

course, actions may also have unanticipated effects or the result may be

unknown until the action is performed (e.g., when testing for some condition).

A particularly important set of primitive actions are communications

actions. For example, one actor may tell a second actor some fact (represented by

Inform(speaker, hearer, fact)) or request that the second actor perform some

action (Request(speaker, hearer, action)). As a result of these actions, the

second hearer knows the fact or has a goal of performing the action.

In the models, I represent what an actor knows about the preconditions

and effects of an action. To simplify the specification of actions, I usually do not

provide the decomposition for these complex actions; rather, I simply note that a

particular actor is capable of performing the action. In principle one could work

out in detail the primitive actions and knowledge necessary to perform each of

the actions in the model. (In fact, knowledge engineers do exactly this when they

develop an expert system.) For the purpose of these models, however, such

detail is usually unnecessary. It is important to know, for example, that software

engineers can locate problems in particular modules (and that other actors can

not); it is not essential to know in detail how they do that. Representing this bit

12

of task knowledge abstractly greatly simplifies the development and

representation of the model.

Actors may also know that another actor can perform an action without

knowing how to do it themselves. Customers, for example, know that response

centre can solve problems, but they do not know in any detail how this is done.

Nevertheless, they can reason about how to take advantage of this ability.

Example

As an example of this approach, the model for the Customer is shown in

Table 3. Note that the model includes both the actor's own knowledge,

capabilities and goals as well as its beliefs about the knowledge and capabilities

of the other actors with which it interacts (in this case, the Response Centre).

The model for the customer is simple, reflecting a deliberate effort on the

part of the company to make it easy for customers to report problems.

Customers know the symptoms of the problem and how important the problem

is to them; they have a goal of knowing a solution to the symptoms; but they do

not, themselves, know anything about how to find solutions. (More precisely,

the process does not require or make use of any knowledge the customer may
have about how to fix the problem. Knowledgeable customers may therefore try

to find other ways to report problems and employees of the company may try to

Table 3. Intentional model of a Customer (C).

3 s : Symptoms(s) a Know(C, s) a Know(C, Importance-of-problem(s))

Customers know some symptoms and how important the problem is

Can(C, Talk-to(C, Response-centre))

Customers can talk to the response centre

Symptoms(s) a Know(C, s) =>3 f : Fix(f) AWant(C, Know(C, f) a Fixes-

symptoms(s, 0)

Customers' goal is to know a fix that fixes the symptoms

Know(C, Symptoms(s) => Can(Response-centre, Fix-problem(s)))

Know(C, Does(x, Fix-problem(s)) => Knows(x, a Fixes-symptoms(s, f))

Customers know that the response centre can find a fix for the symptoms

13

find ways to exploit the customer's knowledge.)

Customers do know, however, that the response centre can find a solution

that fixes the symptoms as long as they know the parameters to the action,

namely, the symptoms. Furthermore, they know how to communicate with the

response centre. Therefore, the customer provides the response centre with the

symptoms and asks it to solve the problem by performing the Fix-problem

action. Performing this action results in the response centre knowing the action,

so the customer then asks to be told the solution for the problem. This process in

shown in Table 4. In the information-flow model, these three communication

acts are all included in the Problem Report message from the customer to the

response centre.

Uses of models

Each intentional model shows what the individuals in the organization

need to know to coordinate with the other members of the organization. For

example, in the organization discussed, the customer only needs to know the

capabilities of the response centre and how to communicate with it, while a

typical software engineer needs (among other things) a fairly detailed model of

the interdependences between parts of the operating system and a way to map
between the modules of the operating system and the capabilities of other

engineers.

Table 4. Customer communication behaviour.

lnform(Customer, Response-centre, s)

The customer tells the response centre the symptoms (the parameter to the action).

Request(Customer, Response-centre, Fix-problem(s))

The customer asks the response centre to fix the symptoms.

Request(Customer, Response-centre, lnformref(Response-centre,

Customer, XxFixes-symptoms(s, x))

The customer asks the response centre to send it the fix (more precisely, to perform the

action of informing the customer of some x that satisfies the relationship

Fixes-symptoms(s, x)).

14

Designing computer-support systems

Knowing the coordination knowledge needed by an actor in a particular

organization may itself be directly useful. For example, the model may suggest

possible information systems to support the members of a group performing the

task by suggesting what information should be provided to help them

coordinate.

For example, one coordination problem faced by software engineers in the

change process is determining which other engineers might be affected by a

proposed change. An information system could help by notifying them of

interactions with modules they might otherwise overlook or by helping them

find the engineer responsible for a particular module. Currently, engineers seem

to independently and informally keep track of which other engineers use the

interfaces they maintain. This kind of information is easy to maintain manually

and in a decentralized fashion when the development group is small and

physically close together but the task becomes more difficult as the group grows

and as other, more remote groups are involved.

One way to implement such a system would be a database of interfaces

and users; an engineer planning to modify an interface could use the database to

determine who should be notified. However, such a database might quickly

become out of date. If so, it would be no worse than the current system but

would offer few advantages and would therefore probably not be used. (In fact,

one of our interviewees had developed a database of interfaces, but had decided

not to use it until a better system could be devised to keep it current.) A more

useful system would include better methods and motivations for users to register

their use of interfaces. For example, having a tool that noticed when a new
interface was used might make it easier for an programmer to know to register as

a user of the interface. Alternately, a system could compute the

interdependencies directly from the code of the operating system, thus

guaranteeing a complete list.

New organizational designs

A model could be used as a basis for various kinds of organizational

redesigns. Once we understand how an organization is currently coordinated

and the constraints that led to a particular organizational structure, we may be

able to design organizations to perform the task that coordinate in entirely new
ways. As the increased use of information technology makes coordination

cheaper, these new organizational forms may become more desirable.

15

For example, in the organization studied, programmers were specialists;

to assign a problem report to an actor required determining what part of the

system was involved and then routing the problem report to the appropriate

actor. Other divisions of the same company used generalists actors; an incoming

bug report was simply assigned to the next available actor to be fixed. (These

two bases for organizing are sometimes called module ownership and change

ownership (Embry and Keenan, 1983).) Malone, Benjamin & Yates (1987b)

discuss the increased use of market-like transactions as a possible consequence of

cheaper coordination. One can imagine using a market-like system instead of

specialists to assign change requests.

In such a system, whenever a change request was received, it would be

broadcast to all maintainers. Maintainers would bid on the changes they wanted

to perform and the change would be assigned to the lowest bidder (e.g., least

time to perform the change or earliest finish date or even lowest cost). If the

change required some specialized knowledge, then maintainers with that

knowledge could bid lower and thus be assigned the task. This system would

ensure that each change is worked on by the person best suited for it at the time,

thus reducing the total cost of making changes. Large changes that required

multiple workers could also be handled this way: a single maintainer who was

good at project management could bid on the change and then decompose it,

subcontract the subtasks and integrate the results.

The coordination cost of this scheme is increased by the need to broadcast

bug reports and manage the bidding process, but a computer conferencing

system, for example, could make these processes quite inexpensive. A more

important problem is the duplication of effort necessary for each maintainer to

assesses each change request and determine how much to bid. In addition, there

may be agency costs to consider (Ross, 1973); for example, if actors are paid

regardless of how many bugs they fix, then they may be motivated to bid high to

avoid work; if it is difficult to measure the performance of the actors (i.e., how
well the problem has been fixed) then a maintainer could bid low to win work

but not actually fix the problems.

Coordination and organization theory

More importantly, I plan to use the models as basis for building theory

about organizations, generalizing from the few cases I have studied to a more

generic description of coordination problem and methods. For example, task

assignment seems to arise as a component of many group tasks, and can be

16

performed in at least three ways, as discussed above. A typology of situations

that require coordination and the set of methods that can be used in these

situations would provide a much more succinct language for describing

organizational processes as well as a set of pieces from which to design new
organizations.

A promising basis for such a typology is the use of boundary objects (Star,

1989). Malone and Crowston (1990) suggest that the need for coordination arises

from constraints imposed on the performance of tasks by the interdependencies

between the tasks. These interdependencies, in turn, can be analyzed as arising

from the tasks' mutual use of common objects. Some of these mutual uses are

inherent in the definition of the tasks; for example, the output of one task

(writing the code for a particular module) may be the input to another

(integrating the system), resulting in what we call a prerequisite constraint (similar

to what Thompson (1967) calls a sequential interdependence). Other

interdependencies arise from the way tasks are assigned to resources, including

actors; for example, two tasks may both require a particular tool, resulting in a

shared resource constraint if there is only one such tool.

Given these constraints, coordination is the work necessary to overcome

them. For example, to overcome a prerequisite constraint at least one of the

actors must be aware of the constraint and know how to communicate with the

other party. Furthermore, the actors must ensure that the tasks are done in the

correct order. For a shared resource constraint, the actors must be able to

schedule their use of the resource to avoid conflicts.

By identifying the shared objects and the way they are used in different

tasks, we can understand the communication in terms of what the actors do to

the objects, e.g., negotiating what the details of the object should be or passing an

object from one actor to another. For each such situation, there may be only a

few patterns of messages that are exchanged. For these sorts of investigations,

comparisons between different organizations will be particularly illuminating.

For example, a customer call object is created by a customer using the

system and consumed by the response centre in handling customer complaints.

This pattern, where one task creates an object that is consumed by another, is

handled in this case by having the customer simply send the object (as a Problem

report message) to the response centre. The exchange of Proposed Solution and

Comment messages can be interpreted as a negotiation between software

engineers about the details of another shared object, a Proposed Change, that is

used as an input by the tasks of changing the affected modules.

17

Alternative coordination strategies

Knowing the constraints may suggest alternative ways to manage them.

For example, there seems to be at least three basic ways to handle the

interdependence between the customer and the response centre. At a minimum,
the user must create the customer call and send it to the response centre to

answer. Second, the user and the response centre can negotiate the details of the

call, for example, by iterating the process (i.e., the customer files a complaint, the

response centre asks for more details, the customer supplies them, etc.) or in a

continuous dialogue. Third, some of the knowledge about the constraints of

either task can be moved from one actor to another.

This final case has three interesting subcases. First, some of the customer's

knowledge can be transferred to the response centre, for example, by having the

response centre recreate the situation on their own computers. Second, some of

the response centre's knowledge can be made available to the customer. For

example, at the site studied, a computer system had recently been developed that

allowed customers to do their own searches through the database of known
problems. Finally, a third party may have some of both actors' knowledge and

be able to mediate between them. In some cases, for example, the customer

engineer responsible for the site may investigate the problem and file a change

request.

This analysis seems to be easily transferable to other settings. For

example, between the design and manufacture of a part, the common object is

the design of the part. Again, the designer must at least provide the

manufacturer with the design. Alternately, the designer and the manufacturer

can negotiate the details of the design, in several possible ways. Finally, some of

either actor's knowledge can be given to another actor.

Again, there are three subcases. First, some of the manufacturer's

knowledge (knowledge about the manufacturing constraints, not about how to

do the manufacturing) can be made available to the designer, for example, by

training the designer in methodologies such as design for manufacturing or by

embodying the knowledge in an intelligent CAD system. Second, some of the

designer's knowledge can be transferred to the manufacturer. For example, if the

design captures the designer's intent as well as the details of the part, the

manufacturing engineer might be able to change some details of the design to

make the parts easier to build while preserving the intent. Finally, a third party,

18

such as a common superior, may have some of both engineers' knowledge and

be able to mediate between them.

Conclusion

In this paper, I have described a method for modelling coordination based

on coordination knowledge and given examples of its use in a field study. I

believe that understanding the coordination needs of different tasks may help in

design of coordinated systems and organizations.

In the future, I plan to use such models as a basis for a computer

simulation of the organizations. Using such models, I hope to be able to explore

more systematically the implications of different distributions of knowledge and

capabilities among actors. The development of these computer simulations may
lead to the development of a body of coordination methods, comparable to the

weak methods of individual problem solving and useful for any group task.

19

References

Bond, Alan H., and Les Gasser (eds.)

1988 Readings in Distributed Artificial Intelligence. San Mateo, CA: Morgan

Kaufman.

Brobst, Steven. A., Thomas W. Malone, Kenneth R. Grant, and Michael D.

Cohen
1986 'Toward intelligent message routing systems." In Computer message

systems-85: Proceedings of the Second International Conference on

Computer Message Systems: 351-359. Amsterdam: North-Holland.

Crowston, Kevin, Thomas W. Malone, and Felix Lin

1987 "Cognitive science and organizational design: A case study of computer

conferencing." Human Computer Interaction, 3: 59-85.

Cyert, Richard. M., and James G. March

1963 A Behavioral Theory of the Firm. Englewood Cliffs, NJ: Prentice-Hall.

Durfee, Edmund H.

1988 Coordination of Distributed Problem Solvers. Boston, MA: Kluwer

Academic.

Embry, J. D., and J. Keenan
1983 "Organizational approaches used to improve the quality of a complex

software product." In R. S. Arnold (ed.), Software Maintenance Workshop:

131-133. Monterey, CA: Naval Postgraduate School.

Ericsson, K. Anders, and Herbert A. Simon
1984 Protocol Analysis: Verbal Reports as Data. Cambridge, MA: MIT Press.

Galbraith, Jay R.

1977 Organization Design. Reading, MA: Addison-Wesley.

Gasser, Les, and Michael N. Huhns (eds.)

1989 Distributed Artificial Intelligence. San Mateo, CA: Morgan Kaufmann.

Hayes, Patrick J.

1977 "In defence of logic." In Proceedings of the Fifth International Joint

Conference on AI (ICJAI-77): 559-565. Cambridge, MA: Available from

the Department of Computer Science, CMU.

20

Huhns, Michael (ed.)

1987 Distributed Artificial Intelligence. San Mateo: Morgan Kaufmann.

Huhns, Michael N., and Les Gasser (eds.)

1989 Distributed Artificial Intelligence. San Mateo, CA: Morgan Kaufmann.

Kidder, Louise H.

1981 Research Methods in Social Relations (4th ed.). New York: Holt, Rinehart

and Winston.

Lientz, Bennet P., and E. Burton Swanson
1980 Software Maintenance Management: A Study of the Maintenance of

Computer Applications Software in 487 Data Processing Organizations.

Reading, MA: Addison-Wesley.

Malone, Thomas W., and Kevin Crowston

1990 "What is coordination theory and how can it help design cooperative

work systems?" In D. Tatar (ed.), Proceeding of the Third Conference on

Computer Supported Cooperative Work. Los Angeles, CA: ACM Press.

Malone, Thomas W., Kenneth R. Grant, Franklyn A. Turbak, Steven A. Brobst,

and Michael D. Cohen
1987a 'Intelligent information-sharing systems." Communications of the ACM,

30: 390-402.

Malone, Thomas W., Joanne Yates, and Robert I. Benjamin

1987b "Electronic markets and electronic hierarchies." Communications of the

ACM, 30: 484-^97.

Marca, David A., and Clement L. McGowan
1988 SADT™: Structured Analysis and Design Technique. New York:

McGraw-Hill.

March, James G., and Herbert A. Simon
1958 Organizations. New York, NY: John Wiley and Sons.

McDermott, Drew
1978 'Tarskian semantics, or No notation without denotation!" Cognive

Science, 2: 277-282.

21

Moore, Robert C
1979 "Reasoning About Knowledge and Action." Unpublished Ph.D. thesis.

Department of Electric Engineering and Computer Science, Massachusetts

Institute of Technology.

Moore, Robert C.

1982 'The role of logic in knowledge representation and commonsense

reasoning." In Proceedings of AAAI National Conference on AT. 428-433.

Pittsburgh, PA: AAAI.

Morgenstern, Leora

1987 "Knowledge preconditions for actions and plans." In Proceedings of the

Tenth International Joint Conference on Artificial Intelligence (IJCAI-87):

867-874

Morgenstern, Leora

1988 Foundations of a Logic of Knowledge, Action and Communication.

Unpublished Ph. D. thesis, Department of Computer Science, New York

University.

Newell, Allen, and Herbert. A. Simon
1972 Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Prietula, Michael J., Renee A. Beauclair, and F. Javier Lerch

1990 "A computation view of group problem solving." In Proceedings of the

23rd Hawaii International Conference on System Sciences. Kailua-Kona,

Hawaii: IEEE Computer Society Press.

Ross, S.

1973 "The economic theory of agency." American Economic Review, 63: 134-

139.

Star, Susan Leigh

1989 "The structure of ill-structured solutions: Boundary objects and

heterogeneous distributed problem solving." In L. Gasser, and M. N.

Huhns (eds.), Distributed Artificial Intelligence: 37-54. San Mateo, CA:

Morgan Kaufmann.

Stefik, Mark, and Daniel G. Bobrow
1986 "Object-oriented programming: Themes and variations." AI Magazine:

40-62.

22

Thompson, James D.

1967 Organizations in Action: Social Science Bases of Administrative Theory.

New York: McGraw-Hill.

Tushman, Michael, and David Nadler

1978 'Information processing as an integrating concept in organization

design." Academy of Management Review, 3: 613-624.

Yourdon, Edward
1989 Modern Structured Analysis. Englewood Cliffs, NJ: Yourdon.

3933 i6
23

Date Due

SEPOtf utfi

FE 7 "91

JUN1 7

SEP 3 1999

MM 2 8199?

I 2 Hi

I :

ay6 g f Iff*

NOV. 1 •

AUG 4

WJS

1998

Lib-26-67

Mil LIBRARIES DUP

I I I I I I I I I I

3 TOflO 00701S50 3

