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AbstrAct

Free/libre open source software (FLOSS, e.g., Linux or Apache) is primarily developed by distributed 
teams. Developers contribute from around the world and coordinate their activity almost exclusively by 
means of email and bulletin boards, yet some how profit from the advantages and evade the challenges of 
distributed software development. In this article we investigate the structure and the coordination practices 
adopted by development teams during the bug-fixing process, which is considered one of main areas of 
FLOSS project success. In particular, based on a codification of the messages recorded in the bug tracking 
system of four projects, we identify the accomplished tasks, the adopted coordination mechanisms, and 
the role undertaken by both the FLOSS development team and the FLOSS community. We conclude with 
suggestions for further research.

Keywords: bug-fixing processes; coordination practices; free/libre open source software; software 
development 

INtrODUctION
In this article, we investigate the coordination 
practices for software bug fixing in Free/Libre 
open source software (FLOSS) development 
teams. Key to our interest is that most FLOSS 
software is developed by distributed teams, i.e., 
geographically dispersed groups of individuals 
working together over time towards a common 
goal (Ahuja et al., 1997, p. 165; Weisband, 
2002). FLOSS developers contribute from 

around the world, meet face to face infrequently, 
if at all, and coordinate their activity primarily by 
means of computer mediated communications 
(Raymond, 1998; Wayner, 2000). As a result, 
distributed teams employ processes that span 
traditional boundaries of place and ownership. 
Since such teams are increasingly commonly 
used in a diversity of settings, it is important to 
understand how team members can effectively 
coordinate their work. 
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The research literature on distributed work 
and on software development specifically em-
phasizes the difficulties of distributed software 
development, but the case of FLOSS develop-
ment presents an intriguing counter-example, 
at least in part: a number of projects have been 
outstandingly successful. What is perhaps most 
surprising is that FLOSS development teams 
seem not to use many traditional coordination 
mechanisms such as formal planning, system 
level design, schedules and defined development 
processes (Mockus et al., 2002, p. 310). As well, 
many (though by no means all) programmers 
contribute to projects as volunteers, without 
working for a common organization and/or 
being paid. 

The contribution of this article is to docu-
ment the process of coordination in effective 
FLOSS teams for a particularly important 
process, namely bug fixing. These practices are 
analyzed by adopting a process theory, i.e., we 
investigate which tasks are accomplished, how 
and by whom they are assigned, coordinated, 
and performed. In particular, we selected four 
FLOSS projects, inductively coded the steps 
involved in fixing various bugs as recorded 
in the projects’ bug tracking systems and ap-
plied coordination theory to identify tasks and 
coordination mechanisms carried out within 
the bug-fixing process. 

Studying coordination of FLOSS pro-
cesses is important for several reasons. First, 
FLOSS development is an important phenom-
enon deserving of study for itself. FLOSS is 
an increasingly important commercial issue 
involving all kind of software firms. Million 
of users depend on systems such as Linux and 
the Internet (heavily dependent on FLOSS 
software tools) but as Scacchi notes “little is 
known about how people in these communities 
coordinate software development across differ-
ent settings, or about what software processes, 
work practices, and organizational contexts are 
necessary to their success” (Scacchi, 2002, p. 
1; Scacchi, 2005). Understanding the reasons 
that some projects are effective while others 
are not is a further motivation for studying 
the FLOSS development processes. Second, 

studying how distributed software develop-
ers coordinate their efforts to ensure, at least 
in some cases, high-performance outcomes 
has both theoretical and managerial implica-
tions. It can help understanding coordination 
practices adopted in social collectives that are 
not governed, at least apparently, by a formal 
organizational structure and are characterized 
by many other discontinuities that is, lack of 
coherence in some aspects of the work setting: 
organization, function, membership, language, 
culture, etc. (Watson-Manheim et al., 2002). 
As to the managerial implications, distributed 
teams of all sorts are increasingly used in many 
organizations. The study could be useful to 
managers that are considering the adoption of 
this organizational form not only in the field of 
software development. 

The remainder of the article is organized as 
follows. In Section 2 we discuss the theoretical 
background of the study. In Section 3 we stress 
the relevance of process theory so explaining 
why we adopted such a theoretical approach. 
We then describe coordination theory and use 
it to describe the bug-fixing process as carried 
out in traditional organizations. The research 
methodology adopted to study the bug-fixing 
process is described in Section 4. In Section 5 
and 6 we describe and discuss the study’s results. 
Finally, in Section 7 we draw some conclusions 
and propose future research directions.

bAcKGrOUND
In this section we provide an overview of the lit-
erature on software development in distributed 
environment and the FLOSS phenomenon.

Distributed software Development
Distributed teams offer numerous potential 
benefits, such as the possibility to perform 
different projects all over the world without 
paying the costs associated with travel or 
relocation, or ease of reconfiguring teams to 
quickly respond to changing business needs 
(DeSanctis & Jackson, 1994; Drucker, 1988) or 
to exploit available competences and distributed 
expertise (Grinter et al., 1999; Orlikowski, 
2002). Distributed teams seem particularly 
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attractive for software development, because 
software, as an information product, can be 
easily transferred via the same systems used 
to support the teams (Nejmeh, 1994; Scacchi, 
1991). Furthermore, while many developed 
countries face a shortage of talented software 
developers, some developing countries have a 
pool of skilled professionals available, at lower 
cost (Metiu & Kogut, 2001, p. 4; Taylor, 1998). 
As well, the need to have local developers in 
each country for marketing and localization 
have made distributed teams a business need for 
many global software corporations (Herbsleb 
& Grinter, 1999b, p. 85). 

While distributed teams have many poten-
tial benefits, distributed workers face many real 
challenges. The specific challenges vary from 
team to team, as there is a great diversity in their 
composition and in the setting of distributed 
work. As mentioned, distributed work is charac-
terized by numerous discontinuities that gener-
ate difficulties for members in making sense of 
the task and of communications from others, 
or produce unintended information filtering (de 
Souza, 1993). These interpretative difficulties 
make it hard for team members to develop a 
shared mental model of the developing project 
(Curtis et al., 1990, p. 52). A lack of common 
knowledge about the status, authority and com-
petencies of participants brought together for the 
first time can be an obstacle to the creation of 
a social structure and the development of team 
norms (Bandow, 1997, p. 88) and conventions 
(Weisband, 2002), thus frustrating the potential 
benefits of increased flexibility. 

Numerous studies have investigated social 
aspects of software development teams (e.g., 
Curtis et al., 1988; Humphrey, 2000; Sawyer 
& Guinan, 1998; Walz et al., 1993). These 
studies conclude that large system development 
requires knowledge from many domains, which 
is thinly spread among different developers 
(Curtis et al., 1988). As a result, large projects 
require a high degree of knowledge integration 
and the coordinated efforts of multiple devel-
opers (Brooks, 1975). However, coordination 
is difficult to achieve as software projects are 
non-routine, hard to decompose perfectly and 

face requirements that are often changing and 
conflicting, making development activities 
uncertain. 

Unfortunately, the problems of software 
development seem to be exacerbated when 
development teams work in a distributed envi-
ronment with a reduced possibility for informal 
communication (Bélanger, 1998; Carmel & 
Agarwal, 2001; Herbsleb & Grinter, 1999a).. 

In response to the problems created by dis-
continuities, studies of distributed teams stress 
the need for a significant amount of time spent 
in “community building” (Butler et al., 2002). 
In particular, members of distributed teams 
need to learn how to communicate, interact and 
socialize using CMC. Successful distributed 
cross-functional teams share knowledge and 
information and create new practices to meet the 
task-oriented and social needs of the members 
(Robey et al., 2000). Research has shown the 
importance of formal and informal adopted 
coordination mechanisms, information shar-
ing for coordination and communications, and 
conflict management for project’s performance 
and quality (Walz et al., 1993). However, the 
processes of coordination suitable for distrib-
uted teams are still open topics for research 
(e.g., Orlikowski, 2002).

the FLOss Phenomenon: 
A Literature Overview
The growing literature on FLOSS has addressed 
a variety of questions. Some researchers have 
examined the implications of free software from 
economic and policy perspectives (e.g., Di Bona 
et al., 1999; Kogut & Metiu, 2001; Lerner & 
Tirole, 2001) as well as social perspective (e.g., 
Bessen, 2002; Franck & Jungwirth, 2002; Hann 
et al., 2002; Hertel et al., 2003; Markus et al., 
2000). Other studies examine factors for the 
success of FLOSS projects (Hallen et al., 1999; 
Leibovitch, 1999; Pfaff, 1998; Prasad, n.d.; 
Valloppillil, 1998; Valloppillil & Cohen, 1998, 
Crowston and Scozzi, 2003). Among them, an 
open research question deals with the analysis 
of how the contributions of multiple developers 
can be brought into a single working product 
(Herbsleb & Grinter, 1999b). To answer such 
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a question, a few authors have investigated the 
processes of FLOSS development (e.g., Jensen 
& Scacchi, 2005; Stewart & Ammeter, 2002). 
The most well-known model developed to 
describe FLOSS organization structure is the ba-
zaar metaphor proposed by Raymond (1998). As 
in a bazaar, FLOSS developers autonomously 
decide the schedule and contribution modes 
for software development, making a central 
coordination action superfluous. While still 
popular, the bazaar metaphor has been broadly 
criticized (e.g., Cubranic, 1999). According to 
its detractors, the bazaar metaphor disregards 
some aspects of the FLOSS development 
process, such as the importance of the project 
leader control, the existence of de-facto hierar-
chies, the danger of information overloads and 
burnout, the possibility of conflicts that cause a 
loss of interest in a project or forking, and the 
only apparent openness of these communities 
(Bezroukov, 1999a, 1999b). 

Nevertheless, many features of the bazaar 
model do seem to apply. First, many teams are 
largely self-organizing, often without formally 
appointed leaders or formal indications of rank 
or role. Individual developers may play dif-
ferent roles in different projects or move from 
role to role as their involvement with a project 
changes. For example, a common route is 
for an active user to become a co-developer 
by contributing a bug fix or code for a new 
feature, and for active and able co-developers 
to be invited to become members of the core. 
Second, coordination of project development 
happens largely (though not exclusively) in a 
distributed mode. Members of a few of the larg-
est and most well-established projects do have 
the opportunity to meet face-to-face at confer-
ences (e.g., Apache developers at ApacheCon), 
but such an opportunity is rare for most project 
members. Third, non-member involvement 
plays an important role in the success of the 
teams. Non-core developers contribute bug 
fixes, new features or documentation, provide 
support for new users and fill a variety of other 
roles in the teams. Furthermore, even though 
the core group provides a form of leadership 
for a project, they do not exercise hierarchical 

control. A recent study documented that self-
assignment is a typical coordination mechanism 
in FLOSS projects and direct assignment are 
nearly non-existent (Crowston et al., 2005). In 
comparison to traditional organizations then, 
more people can share power and be involved in 
FLOSS project activities. However, how these 
diverse contributions can be harnessed to create 
a coherent product is still an important question 
for research. Our article addresses this question 
by examining in detail a particular case, namely, 
coordination of bug-fixing processes. 

cONcEPtUAL DEVELOPMENt
In this section, we describe the theoretical per-
spectives we adopted to examine the coordina-
tion of bug fixing, namely, a process-oriented 
perspective and the coordination theory. We 
also introduce the topic of coordination and 
discuss the literature on coordination in soft-
ware development and the (small) literature on 
coordination in FLOSS teams.

Processes as theories
Most theories in organizational and information 
system research are variance theories, compris-
ing constructs or variables and propositions 
or hypotheses linking them. By adopting a 
statistical approach, such theories predict the 
levels of dependent or outcome variables from 
the levels of independent or predictor variables, 
where the predictors are seen as necessary and 
sufficient for the outcomes. In other words, 
the logical structure of such theories is that if 
concept a implies concept b, then more of a 
means more (or less) of b. For example, the 
hypothesis that the adoption of ICT makes 
organization more centralized, examined as a 
variance theory, is that the level of organiza-
tion centralization increases with the number 
of new ICTs adopted. 

An alternative to a variance theory is 
a process theory (Markus & Robey, 1988). 
Rather than relating levels of variables, pro-
cess theories explain how outcomes of interest 
develop through a sequence of events. In that 
case, antecedents are considered as necessary 
but not sufficient for the outcomes (Mohr, 
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1982). For example, a process model of ICT 
and centralization might posit several steps 
each of which must occur for the organization 
to become centralized, such as development 
and implementation of an ICT system and use 
of the system to control decision premises and 
program jobs, resulting in centralization of 
decision making as an outcome (Pfeffer, 1978). 
However, if any of the intervening steps does 
not happen, a different outcome may occur. 
For example, if the system is used to provide 
information directly to lower-level workers, de-
cision making may become decentralized rather 
centralized (Zuboff, 1988). Of course, theories 
may contain some aspects of both variance and 
process theories (e.g., a variance theory with 
a set of contingencies), but for this discussion, 
we describe the pure case. Typically, process 
theories are of some transient process leading to 
exceptional outcomes, e.g., events leading up to 
an organizational change or to acceptance of a 
system. However, we will focus instead on what 
might be called “everyday” processes: those 
performed regularly to create an organization’s 
products or services. For example, Sabherwal 
and Robey (1995) described and compared the 
processes of information systems development 
for 50 projects to develop five clusters of similar 
processes.

Kaplan (1991, p. 593) states that process 
theories can be “valuable aids in understanding 
issues pertaining to designing and implementing 
information systems, assessing their impacts, 
and anticipating and managing the processes 
of change associated with them”. The main 
advantage of process theories is that they can 
deal with more complex causal relationships 
than variance theories. Also they embody a 
fuller description of the steps by which inputs 
and outputs are related, rather than noting the 
relationship between the levels of input and 
output variables. Specifically, representing a 
process as a sequence of activities provides 
insight into the linkage between individual work 
and processes, since individuals perform the 
various activities that comprise the process. As 
individuals change what they do, they change 
how they perform these activities and thus their 

participation in the process. Conversely, process 
changes demand different performances from 
individuals. ICT use might simply make indi-
viduals more efficient or effective at the activi-
ties they have always performed. However, an 
interesting class of impacts involves changing 
which individuals perform which activities and 
how activities are coordinated. Such an analysis 
is the aim of this article.

coordination of Processes
In this subsection, we introduce the topic of 
coordination and present the fundamentals of 
coordination theory. Studying coordination 
means analyzing how dependences that emerge 
among the components of a system are man-
aged. That stands for any kind of system, e.g., 
social, economics, organic, information system. 
Hence, the coordination of the components of 
a system is a phenomenon with a universal rel-
evance (Boulding, 1956). The above definition 
of coordination is consistent with the large body 
of literature developed in the field of organiza-
tion theory (e.g., Galbraith, 1973; Lawrence & 
Lorsch, 1967; Mintzberg, 1979; Pfeffer & Salan-
cik, 1978; Thompson, 1967) that emphasizes 
the importance of interdependence. 

For example, according to Thompson 
(1967), organizational action consists of the 
coordination of the interdependences and the 
reduction of the costs associated to their manage-
ment. Two components/systems are said to be 
interdependent if the action carried out by one 
of them affect the other one’s output or perfor-
mance (McCann & Ferry, 1979; Mohr, 1971; 
Victor & Blackburn, 1987). For space reason, it 
is not possible to present all the contributions on 
coordination in the literature, but because of its 
relevance, we here briefly report on Thompson’s 
seminal work. Thompson (1967) identified three 
main kinds of interdependence, namely pooled, 
sequential and reciprocal interdependence. 
Pooled interdependence occurs among organi-
zation units that have the same goal but do not 
directly collaborate to achieve it. Sequential 
dependence emerges among serial systems. A 
reciprocal dependence occurs when the output 
of a system is the input for a second system and 
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vice versa. The three kinds of interdependence 
require coordination mechanisms whose cost 
increases going from the first to the last one. The 
coordination by standardization, i.e., routine and 
rules, is sufficient to manage pooled-dependant 
systems. Coordination by plan implies the 
definition of operational schemes and plans. It 
can be used to manage pooled and sequential 
dependences. Finally, coordination by mutual 
adjustment is suitable for the management of 
reciprocal dependences. 

The interest devoted by scholars and prac-
titioners to the study of coordination problems 
has recently increased due to the augmented 
complexity of products, production processes 
and to the rapid advancement in science and 
technology. To address these issues scholars 
have developed coordination theory, a sys-
temic approach to the study of coordination 
(Malone & Crowston, 1994). Coordination 
theory synthesizes the contributions proposed 
in different disciplines to develop a systemic 
approach to the study of coordination. Studies 
on coordination have been developed based 
on two level of analysis, a micro and a macro 
level. In particular, most organization studies 
adopt a macro perspective, so considering 
dependencies emerging among organizational 
units. Other studies adopt a micro perspective, 
so considering dependencies emerging among 
single activities/actors. Coordination theory 
adopts the latter perspective and, in particu-
lar, focuses on the analysis of dependencies 
among activities (rather that actors). Hence, 
it is particularly useful to the description and 
analysis of organizational processes, which can 
be defined as a set of interdependent activities 
aimed to the achievement of a goal (Crowston, 
1997; Crowston & Osborn, 2003). In particular, 
this approach has the advantage of making it 
easier to model the effects of reassignments 
of activities to different actors, which is com-
mon in process redesign efforts. We adopted 
this perspective because the study focuses on 
analyzing coordination mechanisms within 
processes. 

Consistent with the definition proposed 
above, Malone and Crowston (1994) analyzed 

group action in terms of actors performing in-
terdependent tasks. These tasks might require or 
create resources of various types. For example, 
in the case of software development, actors 
include the customers and various employees 
of the software company. Tasks include trans-
lating aspects of a customer’s problem into 
system requirements and code, or bug reports 
into bug fixes. Finally, resources include in-
formation about the customer’s problem and 
analysts’ time and effort. In this view, actors 
in organizations face coordination problems 
arising from dependencies that constrain how 
tasks can be performed.

It should be noted that in developing this 
framework, Malone and Crowston (1994) 
describe coordination mechanisms as relying 
on other necessary group functions, such as 
decision making, communications, and devel-
opment of shared understandings and collective 
sensemaking (Britton et al., 2000; Crowston 
& Kammerer, 1998). To develop a complete 
model of a process would involve modeling all 
of these aspects: coordination, decision making, 
and communications. In this article though, we 
will focus on the coordination aspects, bracket-
ing the other phenomenon.

Coordination theory classifies dependen-
cies as occurring between a task and a resource, 
among multiple tasks and a resource, and among 
a task and multiple resources. Dependencies 
between a task and a resource are due to the fact 
that a task uses or creates a resource. Shared 
use of resources can in turn lead to dependen-
cies between the tasks that use or create the 
resource. These dependencies come in three 
kinds. First, the flow dependence resembles the 
Thompson’s sequential dependency. Second, 
the fit dependence occurs when two activities 
collaborate in the creation of an output (though 
in the case where the output is identical, this 
might better be called synergy, since the benefit 
is that duplicate work can be avoided). Finally, 
the share dependency emerges among activities 
that share the use of a resource. Dependencies 
between a task and multiple resources are due 
to the fact that a task uses, creates or produces 
multiple resources or a task uses a resource 
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and create another resource. For example, in 
the case of software development, a design 
document might be created by a design task 
and used by programming tasks, creating a fit 
dependency, while two development tasks might 
both require a programmer (a share dependency) 
and create outputs that must work together (a 
fit dependency). 

The key point in this analysis is that de-
pendencies can create problems that require 
additional work to manage (or provide the 
opportunity to avoid duplicate work). To over-
come the coordination problems created by 
dependences, actors must perform additional 
work, which Malone and Crowston (1994) 
called coordination mechanisms. For example, 
if particular expertise is necessary to perform a 
particular task (a task-actor dependency), then 
an actor with that expertise must be identified 
and the task assigned to him or her. There are 
often several coordination mechanisms that can 
be used to manage a dependency. For example, 
mechanisms to manage the dependency between 
an activity and an actor include (among others): 
(1) having a manager pick a subordinate to 
perform the task; (2) assigning the task to the 
first available actor; and (3) having a labour 
market in which actors bid on jobs. To man-
age a usability subdependency, the resource 
might be tailored to the needs of the consumer 
(meaning that the consumer has to provide that 
information to the producer) or a producer might 
follow a standard so the consumer knows what 
to expect. Mechanisms may be useful in a wide 
variety of organizational settings. Conversely, 
organizations with similar goals achieved us-
ing more or less the same set of activities will 
have to manage the same dependencies, but 
may choose different coordination mechanisms, 
thus resulting in different processes. Of course, 
the mechanisms are themselves activities that 
must be performed by some actors, and so 
adding coordination mechanisms to a process 
may create additional dependences that must 
themselves be managed. 

coordination in software 
Development
Coordination has long been a key issue in 
software development (e.g., Brooks, 1975; 
Conway, 1968; Curtis et al., 1988; Faraj & 
Sproull, 2000; Kraut & Streeter, 1995; Parnas, 
1972). For example, Conway (1968) observed 
that the structure of a software system mirrors 
the structure of the organization that develops 
it. Both Conway (1968) and Parnas (1972) 
studied coordination as a crucial part of software 
development. Curtis et al. (1988) found that in 
large-scale software project, coordination and 
communication are among the most crucial 
and hard-to-manage problems. To address such 
problems, software development researchers 
have proposed different coordination mecha-
nisms such a planning, defining and following 
a process, managing requirements and design 
specifications, measuring process character-
istics, organizing regular meetings to track 
progress, implementing workflow systems, 
among the others. 

Herbsleb and Grinter (1999b), in a study 
of geographically-distributed software develop-
ment within a large firm, showed that some of 
the previously mentioned coordination mecha-
nisms—namely integration plans, component-
interface specifications, software processes and 
documentation—failed to support coordination 
if not properly managed. The mechanisms 
needed to be modified or augmented (allowing 
for the filling in of details, handling exceptions, 
coping with unforeseen events and recovering 
from errors) to allow the work to proceed. 
They also showed that the primary barriers 
to coordination breakdowns were the lack of 
unplanned contact, knowing whom to contact 
about what, cost of initiating a contact, ability 
to communicate effectively and lack of trust or 
willingness to communicate openly. 

Kraut and Streeter (1995), in studying the 
coordination practices that influence the sharing 
of information and success of software develop-
ment, identified the following coordination tech-
niques: formal-impersonal procedures (projects 
documents and memos, project milestones and 
delivery schedules, modification request and 
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error-tracking procedures, data dictionaries), 
formal-interpersonal procedures (status-review 
meetings, design-review meetings, code inspec-
tions), informal-interpersonal (group meetings 
and co-location of requirements and develop-
ment staff, electronic communication such as 
e-mail and electronics bulletin boards, and 
interpersonal network). Their results showed the 
value of both informal and formal interpersonal 
communication for sharing information and 
achieving coordination in software develop-
ment. Note though that this analysis focuses 
more the media for exchanging information 
rather than particular dependencies or coordi-
nation mechanisms that might be executed via 
these media. That is, once you have called a 
group meeting, what should you talk about? 

coordination in FLOss 
Development
A few studies have examined the work practices 
and coordination modes adopted by FLOSS 
teams in more detail, which is the focus of 
this article (Iannacci, 2005; Scacchi, 2002; 
Weber, 2004). Cubranic (1999) observed that 
the main media used for coordination in FLOSS 
development teams were mailing lists. Such a 
low-tech approach is adopted to facilitate the 
participation of would-be contributors, who 
may not have access to or experience with more 
sophisticated technology. The geographical 
distribution of contributors and the variability in 
time of contributors precluded the use of other 
systems (e.g., systems that support synchronous 
communication or prescriptive coordination 
technology, such as workflow systems). Mailing 
lists supported low-level coordination needs. 
Also, Cubranic (1999) found no evidence of 
the use of higher-level coordination, such as 
group decision making, knowledge manage-
ment, task scheduling and progress tracking. 
As they are the main coordination mechanisms, 
the volume of information within mailing lists 
can be huge. Mailing lists are therefore often 
unique repositories of source information on 
design choices and evolution of the system. 
However, dealing with this volume of informa-
tion in large open source software projects can 

require a large amount of manual and mental 
effort from developers, who have to rely on 
their memory to compensate for the lack of 
adequate tools and automation.  

In a well-known case study of two im-
portant FLOSS projects, namely Apache and 
Mozilla, Mockus et al. (2002) distinguished 
explicit (e.g., interface specification processes, 
plans, etc.) and implicit coordination mecha-
nisms adopted for software development. They 
argued that, because of its software structure, 
the Apache development team had primarily 
adopted implicit coordination mechanisms. 
The basic server was kept small. Core develop-
ers worked on what interested them and their 
opinion was fundamental when adding new 
functionality. The functionality beyond the basic 
server was added by means of various ancillary 
projects, developed by a larger community that 
interacted with Apache only through defined 
interfaces. Such interfaces coordinate the effort 
of the Apache developers: as they had to be 
designed based on what Apache provided, the 
effort of the Apache core group was limited. As 
a result, coordination relied on the knowledge 
of who had expertise in a given area and gen-
eral communication on who is doing what and 
when. On the other hand, in the Mozilla project, 
because of the interdependence among modules, 
considerable effort is spent in coordination. In 
this case, more formal and explicit coordination 
mechanisms were adopted (e.g., module owners 
were appointed who had to approve all changes 
in their module). 

Jensen & Scacchi (2005) modelled the 
software-release process in three projects, 
namely Mozilla, Apache and NetBeans. They 
identified tasks, their dependencies and the ac-
tors performing them. However, they did not 
analyze the coordination issues in depth and 
did not focus specifically on the bug-fixing 
process, which is the aim of this article. Rather, 
their final goal was to study the relationships 
among the three communities that form a Web 
Information Infrastructure.

Iannacci (2005) adopted an organizational 
perspective to study coordination processes 
within a single large-scale and well-known 
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FLOSS development project, Linux. He iden-
tified three main (traditional) coordination 
mechanisms, namely standardization, loose 
coupling and partisan mutual adjustment. 
Standardization is a coordination mechanism to 
manage pooled dependencies emerging among 
different contributors. It implies the definition 
of well-defined procedures, such as in the case 
of patch submission or bug-fixing procedures. 
Loose coupling is used to manage sequential 
dependencies among the different subgroups 
of contributors. It is the coordination mecha-
nisms used to, for example, incorporating new 
patches. Finally, partisan mutual adjustment is 
a mechanism used to manage what Iannacci 
(2005) called networked interdependencies, 
an extension of the reciprocal dependencies 
as proposed by Thompson (1967). Networked 
interdependencies are those emerging among 
contributors to specific part of the software. 
Partisan mutual adjustment produces a sort of 
structuring process so creating an informal (sub-
)organization. However, these findings are based 
on a single exceptional case, the Linux project, 
making it unclear how much can be generalized 
to smaller projects. Indeed, most of the existing 
studies are of large and well-known projects 
and focused on the development process. To 
our knowledge, no studies have analyzed the 
bug-fixing process in depth within small FLOSS 
development teams.

A coordination theory 
Application: 
the bug-Fixing Process
To ground our discussion of coordination theory, 
we will briefly introduce the bug-fixing process, 
which consists of the tasks needed to correct 
software bugs. We decided to focus on the 
bug-fixing process for three reasons. First, bug 
fixing provides “a microcosm of coordination 
problems” (Crowston, 1997). Second, a quick 
response to bugs has been mentioned as a par-
ticular strength of the FLOSS process: as Ray-
mond (1998) puts it, “given enough eyeballs, all 
bugs are shallow”. Finally, it is a process that 
involves the entire developer community and 
thus poses particular coordination problems. 

While there have been several studies of FLOSS 
bug fixing, few have analyzed coordination 
issues within bug-fixing process by adopting 
a process view. For example, Sandusky et al. 
(2004) analyzed the bug-fixing process. They 
focus their attention on the identification of the 
relationships existing among bug reports, but 
they do not examine in details the process itself. 
In contrast to the prior work, our article provides 
empirical evidence about coordination practices 
within FLOSS teams. Specifically, we describe 
the way the work of bug fixing is coordinated 
in these teams, how these practices differ from 
those of conventional software development 
and thus suggest what might be learned from 
FLOSS and applied in other settings. 

We base our description on the work of 
Crowston (1997), who described the bug-fix-
ing process observed at a commercial software 
company. Such a process is below defined as 
traditional because 1) it is carried out within 
a traditional kind of organization (i.e., the 
boundary are well defined, the environment 
is not distributed, the organization structure 
is defined) and 2) refers to the production of 
commercial rather than FLOSS software. The 
process is started by a customer who finds a 
problem when using a software system. The 
problem is reported (sometimes automatically 
or by the customer) to the company’s response 
center. In the attempt to solve the problem, per-
sonnel in the center look in a database of known 
bugs. If a match is found, the fix is returned to 
the customer; otherwise, after identifying the 
affected product, the bug report is forwarded 
to an engineer in the marketing center. The as-
signed engineer tries to reproduce the problem 
and identify the cause (possibly requesting ad-
ditional information from the reporter to do so). 
If the bug is real, the bug report is forwarded to 
the manager responsible for the module affected 
by the bug. The manager then assigns the bug 
to the software engineer responsible for that 
module. The software engineering diagnoses 
the problem (if she finds that the problem is in a 
different module, the report is forwarded to the 
right engineer) and designs a fix. The proposed 
fix is shared with other engineers responsible 
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for modules that might be affected. When the 
feedback from those engineers is positive, the 
proposed design is transformed into lines of 
code. If changes in other module are needed, 
the software engineer also asks the responsible 
engineers for changes. The proposed fix is then 
tested, the eventual changed modules are sent 
to the integration manager. After approving, the 
integration manager recompiles the system, tests 
the entire system and releases the new software 
in the form of a patch. To summarize then, in 
the traditional bug-fixing process, the following 
tasks have been identified (Crowston, 1997): 

Report, Try to solve the problem, Search da-
tabase for solution, Forward to the marketing 
manager, Try to solve the problem/Diagnose the 
problem, Forward to the Software Engineering 
Group, Assign the bug, Diagnose the problem, 
Design the fix, Verify affected modules and ask 
for approval, Write the code for the fix, Test it, 
Integrate changes, Recompile the module and 
link it to the system. 

After describing the above process, 
Crowston (1997) went on to analyze the co-
ordination mechanisms employed. A number 
of the tasks listed can be seen as coordination 
mechanisms. For example, the search for du-
plicate bugs as well as the numerous forward 
and verify tasks manage some dependency. 
Searching for duplicate outputs is the coordi-
nation mechanism to manage a dependency 
between two tasks that might have the same 
output. In this case, the tasks are to respond to 
bug reports from customers. These tasks can 
be performed by diagnosing and repairing the 
bug, but if the solution to the bug report can 
be found in the database, then the effort taken 
to solve it a second time can be avoided. Thus, 
searching the database for a solution is a way 
to manage a potential dependency between 
the two bug-fixing tasks. Forwarding and 
verifying tasks are coordination mechanisms 
used to manage dependency between a task 
and the actor appropriate to perform that task. 
These steps are needed because many actors 
are involved in the process and each of them 

carry out a very specialized task, requiring ad-
ditional work to find an appropriate person to 
perform each task. 

rEsEArcH MEtHODOLOGY 
To address our research question, how are bug 
fixes coordinated in FLOSS projects, we carried 
out a multiple case study of different FLOSS 
projects, using the theoretical approach devel-
oped in the previous section. In this section, we 
discuss sample selection and data sources, data 
collection and data analysis, deferring a discus-
sion of our findings to the following section. 

sample section
In this sub-section we describe the basis for 
selecting projects for analysis. Projects to be 
studied were selected from those hosted on 
SourceForge, (http://sourceforge.net/), a Web-
based system that currently supports the devel-
opment of more than 100,000 FLOSS projects 
(although only a small proportion of these are 
actually active). We chose to examine projects 
from a single source to control for differences 
in available tools and project visibility. Because 
the process of manually reading, rereading, 
coding and recoding messages is extremely 
labor-intensive, we had to focus our attention on 
a small number of projects. We selected projects 
to study in-depth by employing a theoretical 
sampling strategy based on several practical 
and theoretical dimensions. 

First, we chose projects for which data we 
need for our analysis are publicly available, 
meaning a large number of bug reports. (Not 
all projects use or allow public access to the 
bug-tracking system.) Second, we chose teams 
with more than 8 developers (i.e., those with 
write access to the source code control system), 
since smaller projects seemed less likely to ex-
perience significant coordination problems. The 
threshold of eight members was chosen based on 
our expectation that coordinating tasks within 
a team would become more complicated as the 
number of members increases. We assumed 
that each member of the team could manage 4 
or 5 relationship, but with eight members, we 
expected some difficulty in coordination to arise. 
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Only 140 projects of SourceForge met the first 
two requirements in 2002 when we drew our 
sample. Third, projects were chosen so as to 
provide some comparison in the target audience 
and addressed topic, as discussed below. Finally, 
because we wanted to link coordination prac-
tices to project effectiveness, we tried to select 
more and less effective development teams. To 
this aim we used the definitions of effectiveness 
proposed by Crowston et al. (2006a), who sug-
gest that a project is effective if it is active, the 
resulting software is downloaded and used and 
the team continues in operation.  We selected 
4 FLOSS projects to satisfy the mentioned 
criteria. Specifically, from the 140 large active 
projects, we selected two desktop chat clients 
that are aimed at end users (KICQ and Gaim) 
and two projects aimed primarily at developers 
(DynAPI, an HTML library and phpMyAdmin, a 
web-based database administration tool). A brief 
description of the projects is reported in Table 
1, including the project goal, age at the time of 
the study, volume of communication and team 
membership. A consequence of the requirement 
of a significant number of bug reports is that all 
four projects are relatively advanced, making 
them representative of mature FLOSS projects. 
Based on the definition proposed by Crowston 
et al. (2006a), Kicq, Gaim and phpMyAdmin 
were chosen as examples of effective projects 
because they were active, the resulting software 
was being downloaded and the group had been 
active for a while. DynAPI was chosen as an 
example of a less effective project because the 
number of downloads and programming activ-
ity had rapidly decreased in the months leading 
up to the study. 

Data collection
In this sub-section we describe how data were 
selected and collected. As mentioned above, all 
of these projects are hosted on SourceForge, 
making certain kinds of data about them eas-
ily accessible for analysis. However, analysis 
of these data poses some ethical concerns that 
we had to address in gaining human subjects 
approval for our study. On the one hand, the 
interactions recorded are all public and de-

velopers have no expectations of privacy for 
their statements (indeed, the expectation is the 
opposite, that their comments will be widely 
broadcast). Consent is generally not required for 
studies of public behaviour. On the other hand, 
the data were not made available for research 
purposes but rather to support the work of the 
teams. We have gone ahead with our research 
after concluding that our analysis does not pose 
any likelihood of additional harm to the poster 
above the availability of the post to the group 
and in the archive available on the Internet. 

We collected several kinds of data about 
each of the cases. First, we obtained data indica-
tive of the effectiveness of each project, such 
as its level of activity, number of downloads 
and development status. Unfortunately, no 
documentation on the organization structure, 
task assignment procedures and coordination 
practices adopted was available on the projects’ 
web sites (further supporting the position that 
these teams do not employ formal coordination 
methods). To get at the bug-fixing process, we 
considered alternative sources of data. Inter-
viewing the developers might have provided 
information about their perceptions of the 
process, but would have required finding their 
identities, which was considered problematic 
given privacy concerns. Furthermore, reliance 
on self-reported data raises concerns about 
reliability of the data, the response rate and 
the likelihood that different developers would 
have different perceptions. While these issues 
are quite interesting to study (e.g., to understand 
how a team develops shared mental models of 
a project, e.g., Crowston & Kammerer, 1998), 
they seemed like distractions from our main 
research question. Because of these concerns, 
we elected to use objective data about the bug-
fixing process. Hence, the main source of data 
about the bug-fixing process was obtained from 
the archives of the bug tracking system, which 
is the tool used to support the bug-fixing process 
(Herbsleb et al., 2001, p. 13). These data are 
particularly useful because they are unobtrusive 
measures of the team’s behaviors (Webb & 
Weick, 1979) and thus provide an objective de-



12   Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of  IGI Global
is prohibited.

scription of the work that is actually undertaken, 
rather than perceptions of the work. 

In the bug tracking system, each bug has a 
request ID, a summary (what the bug is about), 
a category (the kind of bug, e.g., system, inter-

face), the name of the team member (or user) 
who submitted it, and the name of the team 
member it was assigned to. An example bug 
report in shown in Figure 1 (the example is ficti-
tious). As well, individuals can post messages 
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Table 1. Four examined projects



Journal of Database Management, 19(2), 1-30, April-June 2008   13

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of  IGI Global 
is prohibited.

regarding the bug, such as further symptoms, 
requests for more information, etc. From this 
system, we extracted data about who submitted 
the bugs, who fixed them and the sequence of 
messages involved in the fix. By examining the 
name of the message senders, we can identify 
the project and community members who are 
involved in the bug-fixing process. Demo-
graphic information for the projects and devel-
opers and data from the bug tracking system 
were collected in the period 17–24 November 
2002. We examined 31 closed bugs for Kicq, 
95 closed bugs for DynAPI, 51 bugs for Gaim 
and 51 for PhPMyAdmin. The detailed text of 
the bug reports is not reported because of space 
restriction but is available on request.

Data Analysis
In this section we present our data analysis ap-
proach. For each of the bug reports, we carefully 
examined the text of the exchanged messages 
to identify the task carried out by each sender. 
We first applied the framework developed by 
Checkland & Scholes (1990), who suggested 
identifying the owners, customers and environ-
ment of the process, the actors who perform it, 
the transformation of inputs into outputs, the 
environment and the worldview that makes the 
process meaningful. We then followed the meth-
od described by Crowston & Osborn (2003), 
who suggested expanding the analysis of the 
transformation by identifying in more detail the 

Figure 1. Example bug report and followup messages
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activities carried out in the transformation. We 
identified the activities by inductively coding the 
text of the messages in the bug tracking systems 
of the four projects. We started by developing a 
coding scheme based on prior work on bug fixing 
(Crowston, 1997), which provided a template 
of expected activities needed for task assign-
ment (those listed above). The coding system 
was then evolved through examination of the 
applicability of codes to particular examples. 
For example the message: 

I’ve been getting this same error every FIRST 
time I load the dynapi in NS (win32). After re-
loading, it will work… loading/init problem?

represents a report submitted by another user 
(someone other than the person who initially 
identified and submitted the bug). This message 
was coded as “report similar problems”. Table 2 
shows the list of task types that were developed 
for the coding. The lowest level elementary task 
types were successively grouped into 6 main 
types of tasks, namely Submit, Assign, Analyze, 
Fix, Test & Post, and Close. A complete example 
of the coded version of a bug report (the one 
from Figure 1) is shown in Figure 2. 

Once we had identified the process tasks, 
we studied in depth the bug-fixing process as 
carried out in the four cases. Specifically, we 
compared the sequence of tasks across different 

1.0.0 Submit (S)

1.1.0 Submit bug (code errors)

 1.1.1 Submit symptoms

 1.1.2 Provide code back trace (BT)

 1.2.0 Submit problems 

 1.2.1 Submit incompatibility problems (NC)

2.0.0. Assign (As)

2.1.0 Bug self-assignment (A*)

2.2.0 Bug assignment (A)

3.0.0 Analyze (An)

3.1.0 Contribute to bug identification

 3.1.1Report similar problems (R )

 3.1.2 Share opinions about the bug (T)

3.2.0 Verify impossibility to fix the bug

 3.2.1 Verify bug already fixed (AF) 

 3.2.2.Verify bug irreproducibility (NR)

 3.2.3 Verify need for a not yet supported function (NS) 

 3.2.4 Verify identified bug as intentionally introduced (NCP) 

3.3.0 Ask for more details

 3.3.1 Ask for Code version/command line (V)

 3.3.2 Ask for code back trace/examples (RBT/E)

3.4.0 Identify bug causes (G)

Table 2. Coded tasks in the bug-fixing process

continued on following page
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bugs to assess which sequences were most com-
mon and the role of coordination mechanisms 
in these sequences. We also examined which 
actors performed which tasks as well as looked 

for ways to more succinctly present the pattern 
of tasks, e.g., by presenting them as Markov 
processes. Because of the shortness and rela-
tive simplicity of our task sequences, we could 

 3.4.1 Identify and explain error (EE)

 3.4.2 Identify and explain bug causes different from code (PNC)

4.0.0 Fix (F)

4.1.0 Propose temporary solutions (AC)

4.2.0 Provide problem solution (SP)

4.3.0 Provide debugging code (F)

5.0.0 Test & Post (TP)

5.1.0 Test/approve bug solution 

 5.1.1 Verify application correctness (W)

5.2.0 Post patches (PP)

5.3.0 Identify further problems with proposed patch (FNW)

6.0.0 Close

6.1.0 Close fixed bug/problem

6.2.0 Closed not fixed bug/problems

 6.2.1 Close irreproducible bug (CNR) and close it

 6.2.2 Close bug that asks for not yet supported function (CNS)

 6.2.3 Close bug identified as intentionally introduced (CNCP) 

Table 2. continued

Bug ID Summary Assigned to Submitter

0000000 crash with 
alfa chat gills kkhub

Task Person Comments

(S) kkhub

(V) cenis asks what version kkhub is running

(R) cobvnl reports the same problem as kkhub. submits information about the 
operating systems and the libraries 

(V) cenis asks again what version both users are running

(W) kkhub reports the most recent version of cicq works

(TP&C) cobvnl reports version information and close the bug

(C) bug closed

Figure 2. Coded version of bug report in Figure 1
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exactly match task sequences, rather than having 
to statistically assess the closeness of matches 
to be able to form clusters (Sabherwal & Robey, 
1995). Therefore, we were able to analyze the 
sequences by simple tabulation and counting, 
though more sophisticated techniques would be 
useful for larger scale data analysis. In the next 
Section we present the results of our analysis.

FINDINGs 
In this section we present the findings from our 
analysis of the bug-fixing process in the four 

projects and the coordination mechanisms em-
ployed. Data about the percentage of submitted, 
assigned and fixed bugs both by team members 
and individuals external to the team for each 
project are reported in Table 3. Table 4 sum-
marizes our findings regarding the nature of the 
bugs fixing process in the four projects.

We now present our overall analysis of 
the bug-fixing process. Each instance of a bug-
fixing process starts (by definition) with a bug 
submission (S) and finishes with bug closing 
(C). Submitters may submit problems/symp-

Kicq DynAPI Gaim phpMyAdmin

Bugs submitted by team members 9.7% 21% 0% 21.6%

Bugs submitted by members external to the 
team 90.3% 78.9% 100% 78.4%

Bug assigned/self-assigned 
of which: 9.7% 0% 2% 1%

Assigned to team members 0% - 100% 100%

Self assigned 66% 0%

Assigned to members external to the team 33% - - 0%

Bug fixed 51,6% 42,1% 51% 80%

Fixed by team members 81,3%  50% 84% 90,2%

Bug fixed by members external to the team 18,7% 50% 16% 9.8%

Kicq DynAPI Gaim phpMyAdmin

Min task sequence 3 2 2 2

Max task sequence 8 12 9 13

Uncommon tasks 
(count) Bug assignment (3) Bug assignment 

(0) Bug assignment (0) Bug assignment (1)

Community members 18 53 23 20

Team members’  
participation 2 of 9 6 of 11 3 of 9 4 of 10

Most active team  
members
Role/ name

Project mgr: denis; 
Developer: davidvh

A d m i n :  
r a i n w a t e r ; 
Ext member: 
dcpascal

Admin-developer:  
warmenhoven;
Developer: rob-
flynn

Admin-developer: 
loic1; 
Admin-developer 
lem9.

Max posting by single 
community member 2 6 4 3 

Not fixable bug closed 8 5 5 -

Table 3. The bug-fixing process: Main results

Table 4. Observed characteristics of the bug-fixing processes in the four projects
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toms associated with bugs (Ss), incompatibility 
problems (NC) or/and also provide information 
about code back trace (BT). After submission, 
the team’s project managers or administrators 
may assign the bug to someone to be fixed ((A); 
(A*) if they self-assign the bug). Other members 
of the community may report similar problems 
they encountered (R), discuss bug causes (T), 
identify bug causes (G) and/or verify the im-
possibility of fixing the bug. Participants often 
ask for more information to better understand 
the bug’s causes (An). In most cases, but not 
always, after some discussion, a team member 
spontaneously decides to fix (F) the bug. Bug 
fixing may be followed by a test and the submis-
sion of a patch (TP). Testing is a coordination 
mechanism that manages usability between 
producing and using a patch, by ensuring that 
the patch is usable. However, as later explained, 
in the examined projects this type of activity 
is not often found. The bug is then closed (C). 
Bugs may also be closed because they cannot be 
fixed, e.g., if they are not reproducible (CNR), 
involve functions not supported yet (CNS) 
and/or are intentionally introduced to add new 
functionality in the future (CNCP). Notice that 
the closing activity is usually attributed to a 
particular user. 

For our analysis, we consider Submission, 
Analysis, Fix and Close to be operative activities, 
while Assignment, Test and Posting are coordi-
nation mechanisms. As already discussed, As-

signment is the coordination mechanisms used 
to manage the dependency between a task and 
the actor appropriate to perform it. Posting is 
the mechanisms used to manage the dependency 
between a task and its customers (it makes the 
fix available to the persons that need it). 

The tasks identified above are linked by 
sequential dependencies as shown in Figure 3. 
These dependencies were identified by consider-
ing the logical connection between tasks based 
on the flow of resources. For example, a patch 
can not be tested before it is created. Because 
the dependencies can be satisfied in different 
orders, different sequences of the activities are 
possible. The tasks and their sequence change 
from bug to bug. Figure 3 shows the most 
frequent sequences observed, as identified by 
tabulating and counting the sequences. 

Table 5 shows the portion of processes that 
follow each possible paths, based on the col-
lected ways the bug-fixing process is observed 
to be performed within the FLOSS teams. For 
example, row 1 of Table 5 is read as follows. 
In the Dynapi project, submission always oc-
curs as the first task (as it does for all of the 
groups, by definition), while the second task 
is S in 26% of cases, An in 39% of cases, F in 
19% of cases, TP in 1% of cases and C in 15% 
of cases, and so on. 

In Table 6, we describe the occurrences per 
task for the four projects and the average number 
of tasks to fix bugs. A χ2 test shows a significant 

1 submit

2 assign

3 analyze

� fix

� test&post

� close

L

L

1

L

L

L

Figure 3. Task dependencies in the bug-fixing process
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i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

2 S S 42% 26% 4% 2%

  As 6% - 2% 2%

  An 39% 39% 61% 41%

  F 13% 19% 24% 45%

  TP  - 1% 2% 8%

  C  - 15% 8% 2%

3 S An 38% 36% 50% 100%

  F 62% 40% 50% -

  TP - 8% - -

  C - 16% - -

 As An - - 100%

F 50% - 100% -

  TP 50% - - -

 An S 8% - - 5%

  An 25% 41% 58% 52%

  F 8% 11% 3% 29%

  TP - - 3% -

  C 58% 49% 35% 14%

 F An - 11% - 13%

  F 50% 22% 8% 4%

  TP - 6% - 4%

  C 50% 61% 92% 78%

 TP An - - - 50%

  F - 100% 100% -%

  TP - - - -50%

  C - - - -

 C An - 7% - -

C - 93% - -

4 S S - - - -

  An 100% - - -

  F - - - 100%

  TP - - - -

  C - - - -

 An S - 4% 5% -

  An 13% 48% 53% 50%

  F 25% 11% 21% 11%

Table 5. Portion of processes for each possible path

continued on following page
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i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

  TP  - 4% - 6%

  C 63% 33% 21% 33%

 F S - - - -

As 8% - - -

  An  11% 20%  

  F 33% 16% - 14%

  TP - 5% - 29%

  C 58% 68% 80% 57%

 TP S - - - -

  An  - - - - 

  F  - 33% - 33%

  TP  - - -  33%

  C - 67% 100% 33%

 C C - - 100% -

5 S AN - - 100% -

  F - - - -

  TP - 100% - -

As F 100% - - -

 An S - - - -

  An 50% 27% 73% 67%

  F - 13% 18% 11%

  TP - - - 11%

  C 50% 60% 9% 11%

 F An 17% 14% - 20%

  F -- - 25% -

  TP - - 25% -

  C 83% 86% 50% 80%

 TP An - - - - 

  F - - - 50%

  TP - 100% - - 

  C - - - 50%

6 An S -  11% - 

  As 50% - - 14%

  An - 20% 22% 43%

  F - -  11% 29%

TP - 20% - -

  C 50% 60% 56% 14%

Table 5. continued

continued on following page
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i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

 F S - - - - 

  An - - - -

  F - - - - 

  TP - - - 33%

  C 100% 100% - 67%

 TP An - - - -

  F - 100% - -

  TP - - - -

  C - - - 100%

7 S AN - - 50% -

  © - - 50% -

 As F 100% - - 100%

 An S - - - 33%

An - 33%

  F - 100% 100% -

  TP - - - - 

  C - - - 33%

 F An - 100% - -

  F - - - -

  TP - - - -

  C - - 100% 100%

 TP F - 100% - 100%

8 S An - - - 100%

  F - - - -

An An - 100% - -

F - 100% 100%

 F An - 50% - -

TP - - - 50%

  C 100%  50% 100% 50%

9 An An - 50% - 100%

  C - 50% - -

 F AN - - - 100%

  C - - 100% -

TP TP - - - 100%

10 An An - 100% - 50%

  F - - - 50%

Table 5. continued

continued on following page
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difference in the distribution of task types across 
projects (p<0.001). On all projects, submit is 
the task that always appears first, while analyze 
is the most common second task and fix, third. 
The first three most frequent task sequences 
are reported in Table 7. As noted above, given 
the limited number of examined sequences, the 
sequences were manually identified. Finally, in 
Table 8 we show which tasks are carried out 
by which roles. Please notice that differences 
in percentage shown in Table 3 and Table 8 are 
due to the fact that results reported in Table 8 
are calculated based on the total number of 
tasks carried out per bug. For example, in Table 
3 the considered submissions are those carried 
out only as first task. In Table 8 all submissions 
tasks (i.e. also those carried out as second, third 
etc. task) are considered. As reported in Table 
2, submissions tasks can be more than one per 
bug because submissions can occur also in the 
form of a submit sub-task. The same stands for 
the fixing tasks. In Table 3 only the final fixing 
tasks are considered.

A detailed description of the process as 
performed in the four cases is provided below 
considering both the sequence of tasks and the 
participation in the bug-fixing process.

Kicq
The minimal sequence is composed of three 
tasks, the longest by eight. Bug fixing is usu-
ally the second task in the sequence, meaning 
that it is most common for bugs to be fixed 
immediately after they are submitted, which 
is different from the overall picture in which 
analysis was most common. Bug assignment is 
a quite rare task, as only three bugs are formally 
assigned. Eight bugs were closed because they 
were considered to be not fixable. 

There are 18 identified users, but many 
(anonymous) users submitted bugs and con-
tributed to analysis and fixing. Team members 
are not very active in bug fixing, except for 
one of the two project managers (denis), who 
is involved in all the tasks and, in particular, in 

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

TP - - - 100%

11 An An - 100%  50%

  F - - - 50%

 F C - - - 100%

12 An An - - - 100%

  C - 100% - -

 F C - - - 100%

13 An C - 100% - 100%

Table 5. continued

 Task

Project (bugs) 
(S) (Ag) (An) (F) (TP) (C) Avr. tasks 

per bug

KICQ (31) 44 4 24 23 0 31 4.4

Dynapi (95) 121 0 94 54 9 95 3.8

Gaim (51) 71 1 77 28 4 51 4.2

Phpmyadmin (51) 54 2 66 45 15 51 4.6

Table 6. Task occurrences and average number of tasks per projects
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First 
task

Second 
task

Third 
task

Fourth 
Task Occurrences

Kicq
S
S
S

An
F
An

C
C
F

-
-
C

13
11
2

DynAPI
S
S
S

An
F
C

C
C
-

-
-
-

34
24
17

Gaim
S
S
S

An
F
An

C
C
F

-
-
C

21
13
6

phpMy-
Admin

S
S
S

F
An
An

C
C
F

-
-
C

19
8
7

All proj-
ects

S
S
S

An
F
C

C
C
-

-
-
-

76
67
22

Table 7. Most frequent task sequences

task ROLES/PROJECT
Kick

 devel pm   % of total tasks

S  4   9%

As  4   100%

An  18   75%

F 1 15   70%

TP      

total 2 49    

 Dynapi

 devel admin admin/develop no role % of total tasks

S 9 6 1 10 21%

As      

An  27  3 32%

F  18 1 2 35%

TP  2 1  33%

total 9 53 3 15  

 Gaim

 admin/develop develop supp. mang.  % of total tasks

S     0%

As  1   100%

An 33 11 1  58%

Table 8. Tasks carried out by different roles

continued on following page
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bug analysis and fixing. Out of 23 fixed bugs, 
16 are fixed by denis. Apart from a developer 
(davidvh), the other project members seem 
not take part in the bug-fixing process at all. 
However, it is noteworthy that the bug track-
ing system register three bugs as submitted and 
assigned to the administrator (bill), although 
he does not otherwise take part in the process. 
Most of the community members have posted 
just one bug, and only two of them posted 2 
bugs each. 

Dynapi 
The minimal sequence is composed of two 
tasks, the longest by 12. Again, bug assignment 
is not explicitly carried out; apparently com-
munity or team members decide autonomously 
to take part to the bug-fixing process. However, 
the system reports that six bugs (out of 95) are 
assigned to an administrator and the rest to a 
member external to the team. Five bugs are 
closed because they are said to be not fixable. 
Bug fixing is usually the second or the third 
task in the sequence. 

Team members are not very active except 
for an administrator (rainwater), who is involved 
in all the tasks and, in particular, in bug analysis 
and fixing. The other five team members (two 
without a specific role, one administrator/de-
veloper, one developer and one administrator) 
are mostly involved in bug fixing. The com-

munity members involved in the process are 
47 persons plus some anonymous posts. Most 
of them submitted just one bug, but some 
submitted more (e.g., one submitted six bugs). 
Community members are mostly involved in 
bug submission but some also carry out other 
tasks. In particular, one of them (dcpascal) is 
very active in all the process tasks. Out of 57 
fixed bugs, 20 are fixed by a team member (the 
project manager). 

Gaim
The minimal sequence is composed of two 
tasks, the longest by nine. Bug assignment is 
not explicitly carried out, as community or team 
members decide autonomously to take part to 
the bug-fixing process. However, the system 
reports that 24 bugs (out of 51) are assigned to 
an administrator (and the rest to member exter-
nal to the team). Five bugs are directly closed 
because they are said to be not fixable.

Team members are not very active in bug 
fixing except for the administer/developer 
(warmenhoven) and a developer (robflynn), who 
are involved in many tasks and, in particular, in 
bug analysis and fixing. Apart from them, just 
another member of the project team, a developer 
(lschiere), is also involved in the bug fixing. The 
community members involved in the process are 
21 persons plus some anonymous users. Most 
of them posted just one bug (2 of them posted 

F 17 6   82%

TP     100%

total 52 19 1   

 Phpmyadmin

 admin/develop pm   % of total tasks

S 11 1   22%

As 2    100%

An 49    74%

F 40    89%

TP 10    93%

total 115 1    

Table 8. continued



2�   Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of  IGI Global
is prohibited.

five bugs, one 4 bugs). Some of them are also 
involved in bug analysis and fixing. Out of 29 
fixed bugs, 23 are fixed by a team member (the 
project manager). 

Phpmyadmin
The minimal sequence is composed of two 
tasks, the longest by thirteen. Bug assignment 
is a quite rare task, as only one bug is formally 
assigned. The assignment is carried out by an 
administrator/developer (lem9) and directed to 
a team member (loic1). However, the system 
reports that all 51 are assigned, of which 40 to 
team members. Bug fixing is usually the second 
or the third task. 

Team members are not very active in the 
process, except for two administer/developers 
(loic1 and lem9), who are involved in all the 
tasks and, in particular, in bug analysis and 
fixing (but also submission). Apart from them, 
two team members take part to the process, a 
project manager/adminster (swix) and a devel-
oper (robbat2), that are involved (not heavily) 
in bug submission and analysis. The community 
is composed of 16 members plus some anony-
mous users. Most of them have just posted one 
bug (two of them posted 3 bugs), but some are 
also involved in bug analysis and fixing. Out 
of 49 fixed bugs, 44 are fixed by team member 
(administrator/developers).

DIscUssION 
In this section, we discuss the implications of 
our findings for understanding the coordination 
of bug fixing in FLOSS teams. Our findings 
provide some interesting insights on the bug-
fixing process for FLOSS development in these 
teams. First, process sequences are on average 
quite short (four tasks) and they seem to be quite 
similar: submit, (analyze), fix and close. As 
shown in Table 3, formal task assignments are 
quite uncommon: only few bugs are formally 
assigned. Coordination seems rather to sponta-
neously emerge. From bug description and ini-
tial analysis, those who have the competencies 
autonomously decide to fix the bug and simply 
go ahead and do so. That activity is facilitated 
by the supplied bug report and analysis, which is 

often undertaken by several contributors. Apart 
from the procedure to submit bugs (we analyzed 
only bugs submitted through the bug tracking 
system), we do not observe any other formal 
process: roles are not predefined, delivery dates 
are not assigned nor are formal-interpersonal, 
formal-impersonal or informal-interpersonal 
procedures adopted. The lack of assignment is 
one of main aspects differentiating the process 
as it occurs in FLOSS development team from 
the traditional commercial bug-fixing process 
described above. 

Testing is also quite an uncommon task in 
the data. Most of the proposed fixes are directly 
posted, though presumably after personal testing 
that is not documented. If no one describes the 
emergence of new problems with these fixes, 
they are automatically posted and the relevant 
bug closed without a formal test process. It is 
important also to note that many of the posted 
problems do not represent real bugs (i.e. they 
have been already fixed, are not reproducible, 
have been intentionally produced, are associated 
to functions not yet supported or are associated 
to related programs), so they are directly closed 
with that explanation.

Another striking finding is that the bug-
fixing process is apparently carried out without 
any explicit discussion about where knowledge 
is located in the team, contrary to the findings 
of Faraj and Sproull (2000), who stress the 
importance of expertise coordination for team 
effectiveness (they distinguish expertise co-
ordination from what they call administrative 
coordination, which is the focus of this article). 
They define expertise coordination as the man-
agement of knowledge and skill dependencies. 
To manage knowledge it is necessary to know 
where it is located within development team, 
where it is needed and how to access it. However, 
in our observations, the knowledge needs seem 
to emerge by “(informal and asynchronous) 
electronic meetings”. 

The bug tracking system represents a sort 
of organizational memory, storing bug reports 
and solutions found to submitted problems 
(which not always are real bugs). However, 
as discussed in Cubranic (1999), the large 
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number of emails stored makes it difficult for 
contributors to easily identify the solutions to 
their own problems, so making different users 
repeat the same (already fixed or addressed) 
submission more times. In those cases (i.e., for 
bugs closed without being fixed or the attended 
patches posted), it is usually the team members 
that act as “memory”.

A further difference is that in these projects, 
the process is performed by few team members 
(usually not more that two or three) working 
with a member of the larger community. Team 
members (usually project managers, adminis-
trators or developers) are most involved in bug 
fixing, testing and posting. Surprisingly, only 
a few members of the team are involved in the 
process. The other participants are active users 
who submit bugs or contribute to their analysis. 
We also noted striking differences in the level 
of contribution to the process. The most active 
users in the projects carried out most of the 
tasks while most others contributed only once 
or twice. Most community members submit 
only one bug; only two or three members of 
the involved community are involved in fixing 
tasks and can be referred to as co-developers. 
As expected, the most widely dispersed type of 
action was submitting a bug, while diagnosis 
and bug-fixing activities were concentrated 
among a few individuals.

As we have few members of the team and 
few members of the community (co-developers) 
mostly involved in bug fixing and many users/
members of the community (active users) mostly 
involved in bug submission, the organizational 
models proposed in the literature (Cox, 1998) 
seem to be valid for the bug-fixing process. It 
would be interesting to further investigate if 
those, among the active users also involved in 
bug fixing also contribute to software coding, 
e.g., by analysis of contributions of source code 
independent of bug fixes. 

As an apparently less effective project, we 
expected to find that DynAPI had a smaller ac-
tive user base than the other projects. However, 
as noted above, our data shows the opposite. 
However, our estimation of the effectiveness 
of the projects is based on activity levels. It 

appears that DynAPI somehow does not benefit 
from its larger community in increased activ-
ity. One striking difference is the proportion 
of bugs fixed by the team members, shown in 
Table 3, which is much lower in DynAPI than 
in the other projects. This finding suggests 
that the contribution of core members may be 
particularly important in the effectiveness of the 
team. The case studies presented here are not 
sufficient to test this hypothesis, so it is one that 
should be followed up in future studies. 

cONcLUsION
In this article, we investigated the coordination 
practices adopted within four FLOSS devel-
opment teams. In particular, we analyzed the 
bug-fixing process, which is considered central 
to the effectiveness of the FLOSS process. 
The article provided some interesting results. 
The task sequences we observed were mostly 
sequential and composed of few steps, namely 
submit, fix and close. Second, our data supports 
the observation that FLOSS processes seem 
to lack traditional coordination mechanisms 
such as task assignment. Third, effort is not 
equally distributed among process actors. A 
few contribute heavily to all tasks, while the 
majority just submit one or two bugs. As a 
result, the organization structure reflected in 
the process resembles the one proposed in the 
literature for the FLOSS development process. 
Few actors (core developers), usually team 
project managers or administrators, are mostly 
involved in bug fixing. Most of the involved 
actors are active users instead of developers, 
who just submit bug reports. In between are few 
actors, external to the team, who submit bugs 
and contribute to fixing them. Finally, while 
we did not find obvious associations between 
coordination practices and project effective-
ness, we did notice a link to participation: our 
least effective team also had the lowest level of 
participation from core developers, suggesting 
their importance, even given the more widely 
distributed participation possible.

The article contributes to fill a gap in the lit-
erature by providing a picture of the coordination 
practices adopted within FLOSS development 
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team. Besides, the article proposes an innova-
tive research methodology (for the analysis of 
coordination practices FLOSS development 
teams) based on the collection of process data by 
electronic archives, the codification of message 
texts, and the analysis of codified information 
supported by the coordination theory. 

Based on the analysis of task carried out 
and the attendant coordination mechanisms, 
we argue that the bazaar metaphor proposed by 
(Raymond, 1998) to describe the FLOSS orga-
nization structure is still valid for the bug-fixing 
process. As in a bazaar, the actors involved in 
the process autonomously decide the schedule 
and contribution modes for bug fixing, making 
a central coordination action superfluous.

As with all research, the current article 
has some limitations that limit the scope of our 
current conclusions and suggests directions for 
further research. First, although the selected 
projects are quite different in terms of target 
audience and topic, other characteristics (not 
examined because they are not explicitly present 
on the project web sites) could be shared among 
projects so affecting the obtained results. In the 
future, we would like to deepen our knowledge 
about the coordination practices adopted by the 
four projects by directly interviewing some 
of the involved actors. Second, due to the 
limited number of examined bugs, the process 
sequences have been manually examined. In 
the future, we intend to enlarge the number of 
examined bugs and adopt automatic techniques 
(e.g. the optimal matching technique) to analyze 
and classify the task sequences. In particular, 
we plan to further explore the hypothesis about 
the importance of core group members by 
examining a larger number of projects (e.g., 
to examine the change in the population over 
time). Finally, in the article we only examined 
administrative coordination. In the future, we 
intend to examine also expertise coordination 
in more detail. A particular interesting consider-
ation here is the development of shared mental 
models that might support the coordination of 
the teams’ processes. 
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