
 1 

Shared mental models among open source software developers 

Barbara Scozzi1, Kevin Crowston2, U. Yeliz Esereyel2, Qing Li2 
1 Il Facolta’ di Ingegneria, Politecnico di Bari, Taranto, Italy 

2 School of Information Studies, Syracuse University, Syracuse, NY 13210 USA 
 

Abstract1 

Shared understandings are important for software 
development as they guide to effective individual contri-
butions to, and coordination of, the software development 
process. In this paper, we present the results of a prelimi-
nary analysis on shared mental models within Free/Libre 
Open Source Software (FLOSS) development teams. 
Based on structuration theory and by adopting cognitive 
mapping and process analysis, we represented and com-
pared the mental models of some developers of the Lu-
cene Java project. Our analysis suggests that there is a 
high-level of sharing among core developers but the shar-
ing is not complete, with some differences related to ten-
ure in the project. 

1. Introduction 

Distributed teams are groups of geographically dis-
persed individuals working together over time towards a 
common goal. Advances in information and communica-
tion technology are crucial enablers for recent develop-
ment of this organizational form and as a result, distrib-
uted teams are becoming more popular. Distributed teams 
seem particularly attractive for software development 
because the code can be shared via the same systems used 
to support team interactions [1].  

While distributed teams have many potential benefits, 
distributed workers face many real challenges. [2] suggest 
that distributed work is characterized by numerous dis-
continuities: a lack of coherence in some aspects of the 
work setting (e.g., organizational membership, business 
function, task, language or culture) that hinders members 
in making sense of the task and communications from 
others [3], or produces unintended information filtering 
[4] or misunderstandings [5]. The presence of discontinui-
ties seems likely to be particularly problematic for soft-
ware developers [3]. Numerous studies of the social as-
pects of software development teams [e.g., 6, 7] conclude 
that large system development requires knowledge from 
many domains, which is thinly spread among different 
developers [6]. As a result, large projects require a high 

                                                             
1  Under review at the Hawai’i International Conference 

on System Science. Please do not cite or quote. This 
research was partially supported by NSF Grants 03-
41475, 04–14468 and 05–27457. 

degree of knowledge integration and the coordinated ef-
forts of multiple developers [8]. The additional effort re-
quired for distributed work often translates into delays 
compared to traditional face-to-face teams [9].  

In response to the problems created by discontinui-
ties, studies of distributed teams stress the need for a sig-
nificant amount of time spent learning how to communi-
cate, interact and socialize using computer-supported 
communications tools [10]. In this study, we focus spe-
cifically on the role of shared mental models (e.g., com-
mon conceptions of the project, other team members, us-
ers, competitors or programming standards) that guide 
team members’ behaviours and shape their actions.  

The goals of the current study are finding evidence 
for the existence of shared mental models that shape 
teamwork practices. Specifically, the study addresses 
these research questions:  
1. To what degree are the mental models of project team 

members shared? Which aspects are common and 
which unique to developers?  

2. What factors (either project or individual) are related 
to the sharing of mental models? Can we predict 
which aspects are likely to be shared or not shared?  

3. What are implications of shared mental models for 
team performance?  

In this paper, we report on a preliminary analysis of the 
degree of sharing of mental models among developers in 
one project. The following section presents the theoretical 
basis for our study. Subsequent sections present the meth-
odology for data elicitation and analysis and our findings. 
We conclude by discussing advantages and disadvantages 
of the adopted approach and plans for future research.  

2. Theory 

Shared mental models are defined by Cannon-
Bowers & Salas [11] as:  

knowledge structures held by members of a team that 
enable them to form accurate explanations and expec-
tations for the task, and in turn, to coordinate their ac-
tions and adapt their behavior to demands of the task 
and other team members (p. 228).  

The issue is not so much whether team members have 
mental models, but rather the degree of similarity among 
the models of team members. Prior research suggests that 
the existence of accurate shared mental models that guide 
member actions are important for team effectiveness [11].  



 2 

To conceptualize what kinds of shared mental models 
will be important to effective action, we draw inspiration 
from structuration theory [12]. Structuration theory de-
scribes structure as the rules and resources that influence, 
guide or justify individual action and that are simultane-
ously created by those actions. We chose this framework 
because structure is “encoded in actors’ stocks of practical 
knowledge” [13] and “instantiated in recurrent social 
practice” [14]. Therefore, consideration of how structure 
has been conceptualized in prior work will provide insight 
into the kinds of shared mental models that might be rele-
vant for guiding group work. For this study, we consider 
three kinds of rules and resources identified in prior re-
search: 1) interpretive schemes, 2) resources, and 3) 
norms [13, 15]. In the remainder of this section, we dis-
cuss these in turn.  

Interpretive schemes and structures of signification. 
Individual actors’ interpretive schemes create structures 
of signification. Research suggests that shared interpretive 
schemes help improve performance in face-to-face and 
distributed teams [16]. Shared interpretive schemes about 
tasks and actors’ abilities can enable teams to coordinate 
their activities without the need for explicit communica-
tions [17, 18]. Research on software development in par-
ticular has identified the importance of shared understand-
ing in the area of software development. Curtis et al. [19], 
note that, “a fundamental problem in building large sys-
tems is the development of a common understanding of 
the requirements and design across the project team.” 
They go on to say that, “the transcripts of team meetings 
reveal the large amounts of time designers spend trying to 
develop a shared model of the design”. The problem of 
developing shared interpretive schemes is likely to par-
ticularly affect FLOSS development, since FLOSS team 
members are distributed, have diverse backgrounds, and 
join FLOSS teams in different phases of the software de-
velopment process [20]. In short, shared interpretive 
schemes are important as guides to effective individual 
contributions to, and coordination of the software devel-
opment process.  

Resources, roles and structures of domination. The 
control of resources is the basis for power and thus for 
structures of domination. For software development, ma-
terial resources would seem to be less relevant, since the 
work is intellectual rather than physical and development 
tools are readily available, thanks to FLOSS development 
systems such as SourceForge (http://sourceforge.net/) and 
Savannah (http://savannah.gnu.org/). Furthermore, most 
FLOSS teams have a stated ethos of open contribution. 
However, team members face important differences in 
access to expertise and control over system source code in 
particular, which are encoded in the rights accorded to 
different roles.  

Prior case studies have described how individuals 
move from role to role as their involvement with a project 
changes. For example, a common pattern is for active 
users to be invited to join the core development team in 
recognition of their contributions and ability. In some 

teams, this selection is an informal process managed by 
the project initiator, while others such as the Apache Pro-
ject, have formal voting processes for new members. On 
the other hand, we are still learning how the privileges 
and responsibilities of these different roles are defined. 
Again, some projects seem to have formal role defini-
tions, while in others, roles seem to be more emergent.  

Rules and norms and structures of legitimation. Fi-
nally, actors’ social norms and team rules embody struc-
tures of legitimation. [21] notes that rules allow FLOSS 
developers to form stable expectations of others’ actions, 
thus promoting coordination. The importance of such 
rules have been documented in conventional software and 
FLOSS development teams [e.g., 22, 23]. For example, 
[24] describes a set of implicit and explicit rules for soft-
ware development in the FreeBSD project (e.g., “Don’t 
break the build”), while [25] notes implicit rules regard-
ing project forking at the community level.  

3. Data  

We next describe how we obtained data for our 
study, covering in turn our data elicitation approach and 
subject selection.  

3.1. Data elicitation 

To elicit data to address our research questions, we 
interviewed developers active in FLOSS projects. Inter-
views followed a semi-structured protocol based on the 
theory above, designed to elicit information on how team 
members interpret their role and the other members’ roles, 
how they act and the reasons for their behaviours, tacit 
norms and practices and the way such practices have 
arisen. Specifically, the interview protocol included:  
• Project rules and norms. Any explicitly stated norms 

or rule as perceived by developers. 
• Project environment and constraints. The environ-

ment in which the team operates, constraints that they 
have to deal with, customers and competitors. 

• Development strategy. The overall approach to pro-
ject development.  

• Development process. Process by which the software 
is developed (activities, dependencies, coordination 
mechanisms), tools and technology used for software 
development, submit and handle bugs, patches and 
feature requests, and decision-making processes.  

• Team organization. Team structure and specific team 
roles.  

The decision to adopt a semi-structured protocol was 
driven by the techniques we decided to use for the analy-
sis, as discussed in the next section. 

3.2. Setting and subjects 

The results presented in this paper are based on inter-
views carried out with four developers (of a total of seven 
committers) affiliated with the Apache Lucene Java pro-



 3 

ject. Lucene Java is a high-performance, full-featured text 
search engine library written in Java (http://lucene. 
apache.org), suitable for applications that require full-text 
search. It is a sub-project under the Apache Lucene top-
level project.  

One author interviewed the four Lucene Java devel-
opers at an Apache-sponsored conference (represented in 
the rest of the paper by code letters A to D). All four were 
male. Three of the interviewees were committers in Lu-
cene Java. The committers had different seniority with the 
project, having been a committer for 2 years (A), 1 year 
(B) and 3 months respectively (C). The final interviewee 
(D) was a Project Management Committee (PMC) mem-
ber for the Lucene top-level project, a contributor to Lu-
cene Java and a committer for another Lucene sub-project 
(Nutch). The interviews were conducted separately, lasted 
between 30 and 75 minutes and were recorded and then 
transcribed for analysis.  

4. Analysis 

Three of the authors separately and then collectively 
analyzed the interview transcripts adopting an inductive 
approach. The text of the interviews was carefully read to 
identify instantiations of the following mental models:  
• Interpretative schemes. Interpretive schemes include:  

1) definitions of key aspects of the projects;  
2) causal cognitive maps of project features (e.g., 

history, key aspects, norms and practices, and 
organization, in the view of the developers);  

3) processes carried out within the projects.  
The analysis process for these elements is described 
in more detail in subsequent sections.  

• Project roles and resources. Roles, their responsibili-
ties and privileges and the organization structure.  

• Adopted rules and norms. Norms are accepted values 
or ways of behaving. Rules are explicit (hence writ-
ten) norms. 

Some aspects of these structures overlap, e.g., some topics 
are included in both the process and causal maps, and 
some project roles are also given in definitions.  

4.1. Causal cognitive maps 

Causal cognitive maps (hereafter referred to as causal 
maps) are graphic tools used to represent a person’s views 
of a given issue. A causal map is composed of concepts 
and causal links among them [26]. Concepts represent 
ideas, opinions and key issues associated to the topic of 
the map. These are linked by causal relationships, which 
can be mainly distinguished in cause/effect (which do not 
imply intentionality) or means/end relationships. Con-
cepts that represent the cause or the means to achieve a 
given goal are situated at the arrow’s tail, concepts that 
represent the effect or the end at the arrow’s head. 

Causal maps can be used with different purposes. In 
this project, they have been adopted for an explicative 
purpose, i.e., finding evidences of the existence of shared 

mental models among FLOSS developers working on the 
same project. In particular, the maps are used to represent 
and compare the interpretative schemes of the developers 
so as to gauge the degree of common knowledge as well 
as to better understand the reasons that underlie team 
members actions and the dynamics based on which com-
mon interpretative schemes, if any, arise. The causal maps 
were developed using a technique called Documentary 
Coding Method [27], which involves the identification of 
the main concepts cited by the respondents during inter-
views and the relationships among them.  

Once developed, different methodologies can be used 
to analyze and compare maps. In most studies quali-
quantitative metrics, e.g., number of heads, tails, domain 
and centrality are used [28]. Some scholars have also de-
fined ad hoc metrics to compare maps. [29]. Maps can be 
analyzed and compared by measuring the following quali-
quantitative metrics: 
• Heads and Tails. Map heads are those nodes that 

only have arrows going inside (no arrows go outside). 
Heads are representative of the developers’ final 
end/goal and/or the effects of their perception. Tails 
are those nodes that only have arrows going outside 
(no arrows go inside). Tails explain/describe the 
causes of some perceptions and/or the means adopted 
to achieve goals.  

• Domain and Centrality. Domain and centrality pro-
vide information about the importance of concepts. In 
particular, the domain score of a concept is given by 
the sum of direct links (both as input and output) the 
attendant node has. The centrality score of a concept 
is given by the sum of both direct and indirect links 
the attendant node has, so providing information on 
those concepts that are often unconsciously consid-
ered as the most relevant/central.  

• Sets. Sets are groups of concepts that deal with a spe-
cific issue or topic. Topics were assigned to sets by 
the authors and again, disagreements about the as-
signment of topics to sets were resolved by discus-
sion. By counting the number of concepts mentioned 
for each set it is possible to assess the impor-
tance/complexity associated with the topic of the set.  

4.2. Process maps 

A process is a set of activities that, by using different 
inputs, carries out an output [30]. Adopting a process 
view (or a process theory) means explaining how out-
comes of interest develop through a sequence of events. A 
process map is a graphical representation of the process 
carried out within an organization. Many techniques have 
been proposed in the literature to map processes [31]. The 
main objective of such techniques is to gather the infor-
mation necessary to analyze and, eventually, improve the 
process. In the paper, process maps were adopted to de-
scribe which tasks are accomplished within each project, 
how and by whom they are performed and which are the 
dependencies emerging among them. To this aim, by 



 4 

carefully reading the interview texts, we first identified 
the processes mentioned by developers. Successively, we 
identified the task, the involved roles and dependencies 
among task per each process. Finally, we compared the 
maps of the processes as described by different develop-
ers so identifying eventual differences in the tasks, roles 
and/or sequences mentioned.  

4.3. Reliability and cross-subject comparisons 

To ensure reliability, the interpretative schemes, roles 
and resources, and rules and norms identified by each 
analyst for each interview were compared. When consis-
tency was not achieved (as happened especially for causal 
cognitive maps), the authors reviewed the considered text 
together until they achieved agreement.  

Once we had an agreed set of models for each inter-
view, we compared the models across the individuals. We 
first listed and examined the items for which a definition 
was provided. The degree of similarity of the item defini-
tions provided in different interviews was then qualita-
tively assessed. A similar approach was used to compare 
the view of developers on roles and resources, and norms 
and rules. 

5. Findings 

In this section, we discuss in broad terms our find-
ings, covering in turn definitions, causal cognitive maps, 
processes, roles and rules and norms. Table 1 summarizes 
the number of concepts in each model identified per in-
terviewee and identifies concepts that appeared in multi-
ple interviews (the number of such concepts is reported in 
bracket).  

5.1. Definitions 

The analysis of the definitions provided by the inter-
viewees are provided in Table 2. An important point is the 
high degree of sharing of key definitions, such as project 
goals, users and challenges. For example, both senior 
members (A and B) mentioned that the team does not 
have clearly stated goals, but yet the community works 
towards the same goals.  As one of them put it; “It’s really 
kind of a free flowing communal meeting of the minds”. 
This is also evident in that all three members identified 
the goal as developing a search library. Only the non-
committer member described the project as “information 
retrieval” project. Similarly, three interviewees described 
the intended users as people who want to incorporate 
search into their applications. When asked for challenges 
related to the project, all members were able to identify 
some challenges, yet, it seems that none of them take 
those as “problems”. All three members clearly stated that 
“there aren’t any big problems in the project”.  

An interesting difference is in the descriptions was in 
the area of the challenges that the new members face. The 
most senior committer A thought new members did not 

face any particular challenges, since they will have been 
part of the community for a while before becoming a 
committers. On the other hand, the second most senior 
committer, B, suggested the challenges of getting up to 
speed on Apache infrastructure, commit rights, and so on. 
The newest committer, C, identified four different chal-
lenges, such as the burden of suddenly being responsible 
and writing a good code, as well as trying to work with 
non-committers and encouraging them to submit patches. 
Finally, D thought the project is complex to jump in, so 
people need to go through quite bit learning. Meanwhile, 
he also has an opposite opinion: the barrier to enter is low.   

5.2. Causal cognitive maps 

The causal maps for the interviews included a large 
number of concepts (ranging from 63, in the case of D, to 
153 in the case of B) but with only a relatively small 
number of causal connections. In our case, we found that 
the head concepts seemed to reflect the structure of the 
interview, making them less useful for comparing across 
interviewees. We have not attempted to summarize the 
large number of tail concepts.  

We turn next to a comparison of the causal maps ex-
amining central concepts. Many concepts with the highest 
domain scores also have the highest centrality scores (Ta-
ble 3 shows concepts with the highest domain score), 
suggesting which concepts are considered as the most 
relevant by each developer. Concepts that have the high-
est centrality scores (but not the highest domain scores) 
are associated to: the abilities of new members and new 
committers and the reasons to take part to the project for 
A; some project strengths and some aspects of the Apache 
project for B; some project strengths in the case of C. 
Finally, for D they are the fact Lucene Java is used in 
many projects, the project founder’s contribution and the 
committers’ mindset.  

The success of Lucene Java is central (both in terms 
of centrality and domain), thus most relevant, in three 
maps. However, apart from it, relevant concepts differ 
from developer to developer. For example, A describes 
the abilities of another committer, and also mentions a 
step of the procedure to become a committer. B talks of a 
step of the new member hiring procedure, C mentions 
some project strengths and a step of the committing pro-
cedure, Finally, D talks of the different modes to contrib-
ute to the project, the extension of the community and 
new members’ main issue and problems. 

Finally, by examining the concepts presented in the 
maps, nine sets were identified, namely:  
• Challenges: Challenges of the project in general and 

the challenges of new members 
• Change in project: Change in the project over time.  
• Community: Number of members, the roles of com-

munity members, how community gets along.  
• Coordination: How coordination problems/issues are 

addressed. 
• Goals: Goals of the project. 



 5 

• History: How the project was initiated. 
• Leadership: Who the leaders are and why they are 

mentioned as leaders. 
• Membership: New member selection, skill and 

knowledge needed by members. 
• Success/Strengths: Reasons for project success, 

strengths of the software and team.  
The relevance of each set (i.e., the number of concepts per 
set) is an indication of the importance that different issues 
have. As shown in Table 4, issues related to community 
are the most cited by three developers. Challenges and 
success/strengths are the most important issues for the 
two of them. 

5.3. Processes 

We turn next to a consideration of the processes iden-
tified by the interviewees. Three of the interviewees de-
scribed two-three processes whereas one described in 
detail seven different processes (Table 5). However, this 
difference might be attributed to the longer interview pe-
riod. All of the members had the same understanding of 
how the project got initiated. Although all of the inter-
viewees described the member selection process, they 
described it with a different detail level. All interviewees 
mentioned that one person nominates a candidate and then 
PMC votes on the membership. Three interviewees sug-
gested multiple criteria for someone to be nominated that 
include high quality contribution over a long period of 
time and making positive comments on the mailing list. 
The release process and bug-fixing or feature-adding 
processes are also described by two of the interviewees.  

5.4. Roles 

We turn now to a consideration of the roles identi-
fied, in particular the role of the project founder and of 
project leaders.  

All interviewees recognized the multiple level of 
community, in terms of internal people and external peo-
ple, and also people working on coding and people work-
ing on answering question in email-lists. All of them em-
phasize the importance of community and consider 
community as one of project strengths and success fac-
tors. Compared to D and C, A and B provided more over-
all view of community. A said “it is viable sustainable 
community", because of the increasing interest and usage 
in both company and individual level. People leave, more 
new people come in. A also considers new committers as 
the core developers doing a large amount of codes at dif-
ferent time. B said “it is vibrant community", which 
contributes to project success, also builds on it. Same as 
A, B emphasized the importance of new people and he 
clearly connected the spike of group activity with new 
committers.  

When defining the role of the community, B, C and 
D have similar opinions. B referred to the role of the 
community as “they provide feedback about what works 

and what doesn’t work”. When referring to the commu-
nity role C said “users give feedback how they use Lu-
cene. We answer the questions. They ask for new fea-
tures”. D said “one big strength is the community. There 
are lot of people who know that Lucene very well and are 
kind of supporting everybody who is trying to use it”.  

Interviewee D identified seven committers and PMC 
select members. C mentioned criteria of selecting mem-
bers as “specialty in certain area, active for a while, sub-
mit good patches and responsible enough.” Also he iden-
tified the development skill as “knowledge in search, java 
and know how open source works”. B mentioned the  
“litmus test” as “contributing high quality stuff, for a time 
period”, as well as “cordial to each other”. He listed skill 
as “java, personality skill, specialty, know where to look 
in other parts of code, know how to ask, know what you 
know and don’t know”. A mentioned that to “become 
expert level users, contribute some patches, not be abra-
sive.” He also mentioned the PMC as “a step over com-
mitter” when “made a lot of contribution and sustained”.  

A mentioned that people defer to others in certain 
part of the code because of their specialty in certain areas 
which earn the respect. B uses the same word “defer to 
others when it comes to some part of it”. C also briefly 
mentioned “specialists in certain component”.  

Interviewees also had interesting comments that help 
us understand the leadership dynamics in Open Source. 
Two senior interviewees mentioned that “the project 
founder will always sort of be the head [leader] still”. The 
project founder is not as active in Lucene Java currently. 
Yet, “his opinion carries a lot of weight in the commu-
nity” as stated by two interviewees. They also mentioned 
that he limits his comments not to influence the commu-
nity. On the other hand, two interviewees identified other 
leadership dynamics in the team. The most senior com-
mitter suggested that there are either no leaders at this 
time or multiple leaders. He also suggested that there 
might be leadership in certain parts of the project, as well 
as perhaps a leader from the overall organizational per-
spective. He suggested that he might be one of the leaders 
due to the work he did the previous year as well as the 
organizational work (such as getting releases) that he did. 
In fact, the second senior committer also identified him as 
one of the two current leaders. According to these two 
interviewees, leadership seems to be correlated with sus-
tained contribution. On the other hand, the third commit-
ter perceives leadership negatively, as almost being close 
to dictatorship, and thus identifies no leader. He says 
“there are no leaders in the team, everybody has a say and 
rights”. 

5.5. Norms/rules  

Finally, we consider some norms expressed in the in-
terviewees. An important norm is that members be cordial 
to each other in interactions. A lists "nice enough" as an 
important criteria to select new members. Also, they try to 
avoid friction by really convincing people. B points out 



 6 

the rule directly about "we all try to be cordial with each 
other." And he thinks “the project founder brings a lot in 
this area”. A emphasizes the importance of community, so 
they want to avoid frictions and convince people.  

A mentioned “no much group members work on co-
ordinating coding effort. Some users tried, but didn’t 
work. E.g. working on road map, pushing release”. He 
points out he does not want a release plan. B mentioned 
something there are plan for “big issue”, rather than rou-
tine work, but not explicitly task assignement. He also 
pointed out some rules about how to commit or release.  

6. Discussion  

Our findings, as reported above, do show a degree of 
sharing of mental models. As to the interpretive schemes, 
key definitions (e.g. project goals, users and challenges) 
have a high degree of sharing among developers. Some 
aspects of the cause maps are shared as well. For exam-
ple, concepts related to project success/strengths, chal-
lenges and the role of community are central and/or rele-
vant in most maps. As to roles, the importance of 
community is stressed by all members. Finally, norms and 
rule show a high degree of sharing.  

However, some differences in the views of develop-
ers also emerge. Some of them seem to be related to ten-
ure in the project. 

 

6.1. Benefit and drawbacks of causal maps 

The main benefit that derives from the adoption of 
the maps is the ease of the analysis of different perspec-
tives. The graphical representation facilitates identifica-
tion of the key issues and the differences among different 
positions. Moreover, the adopted metrics facilitate the 
understanding of concepts or relationships not perfectly 
clear or conscious to individuals. These relationships can 
be more easily stressed than is the case when other quali-
tative tools (such as case studies or simple interviews) are 
used.  

Of course, causal maps also present some drawbacks. 
In particular, the stage of the knowledge elicitation (inter-
views and codification of collected data) is the most criti-
cal. As most of the qualitative research methodologies, 
the knowledge schemes of the interviewer (i.e., the re-
searcher) can strongly influence the findings. By knowl-
edge scheme we mean the culture, interests and experi-
ences of the interviewer. The researcher’s knowledge 
scheme can influence the way questions are asked (so 
influencing the answers) and, above all, the way data are 
analyzed. As already mentioned, there exist some tech-
niques that try to reduce the subjectivity, but they intro-
duce other sources of error [29]. For example, by provid-
ing an ex-ante defined list of possible constructs and 
concepts (though in some cases they can be extended by 
respondents) the answer possibility of the respondents is 
limited and can be biased. Based on our previous experi-

ence, we have decided to adopt semi-structured interviews 
so trying to minimize the effects of biases. Despite the 
drawbacks, we argue that causal maps can be effectively 
used to characterize the interpretative schemes of the 
FLOSS team members as well to assess if such schemes 
are shared and how they affect work practices. 

6.2. Limitations 

Structure of the causal maps is influenced by the way 
the interview was structured. It was difficult to conduct 
semi-structured interviews while also ensuring respon-
dents talked of the same items.  

7. Conclusions  

We have presented a preliminary analysis of the de-
gree of sharing of mental models among developers in a 
FLOSS development project. Our analysis suggests that 
there is a high-level of sharing among core developers but 
the sharing is not complete, with some differences related 
to tenure in the project. Our future work will extend these 
results in several directions:  
1. Include more developers from the Lucene Java pro-

ject, including those with different degrees of partici-
pation in the project in order to assess the degree of 
sharing and how the sharing relates to individual 
characteristics.  

2. Include developers from other projects. We have 
completed interviews with developers from several 
other Apache projects that we will analyze to assess 
the degree of sharing between different projects. We 
anticipate finding certain concepts in common but 
others that are unique to the particular project. We 
would also like to add non-Apache projects to see the 
influence of the Apache Software Foundation on 
sharing of mental models.  

3. Include developers from less successful projects. The 
projects selected so far have all been rather success-
ful. We would like to interview developers of a fail-
ing project to determine if there is a relation between 
the degree of shared mental models and project effec-
tiveness.  

 References  

[1] B. A. Nejmeh, "Internet: A strategic tool for the software 
enterprise," Communications of the ACM, vol. 37, pp. 23–27, 
1994. 

[2] M. B. Watson-Manheim, K. M. Chudoba, and K. Crow-
ston, "Discontinuities and continuities: A new way to understand 
virtual work," Information, Technology and People, vol. 15, pp. 
191–209, 2002. 



 7 

[3] P. C. van Fenema, "Coordination and control of globally 
distributed software projects," in Erasmus Research Institute of 
Management. Rotterdam, The Netherlands: Erasmus University, 
2002, pp. 572. 

[4] P. S. de Souza, "Asynchronous Organizations for Multi-
Algorithm Problems," in Department of Electrical and Com-
puter Engineering, : Carnegie-Mellon University, 1993. 

[5] D. J. Armstrong and P. Cole, "Managing distance and dif-
ferences in geographically distributed work groups," in Distrib-
uted Work, P. Hinds and S. Kiesler, Eds. Cambridge, MA: MIT 
Press, 2002, pp. 167–186. 

[6] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the 
software design process for large systems," Communications of 
the ACM, vol. 31, pp. 1268–1287, 1988. 

[7] S. Sawyer and P. J. Guinan, "Software development: Proc-
esses and performance," IBM Systems Journal, vol. 37, pp. 552–
568, 1998. 

[8] F. P. Brooks, Jr., The Mythical Man-month: Essays on 
Software Engineering. Reading, MA: Addison-Wesley, 1975. 

[9] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, 
"An empirical study of global software development: Distance 
and speed," presented at Proceedings of the International Con-
ference on Software Engineering (ICSE 2001), Toronto, Canada, 
2001. 

[10] B. Butler, L. Sproull, S. Kiesler, and R. Kraut, "Community 
effort in online groups: Who does the work and why?," in Lead-
ership at a Distance, S. Weisband and L. Atwater, Eds. Mah-
wah, NJ: Lawrence Erlbaum, 2002. 

[11] J. A. Cannon-Bowers and E. Salas, "Shared mental models 
in expert decision making," in Individual and Group Decision 
Making, N. J. Castellan, Ed. Hillsdale, NJ: Lawrence Erlbaum 
Associates, 1993, pp. 221-246. 

[12] A. Giddens, The Constitution of Society: Outline of the 
Theory of Structuration. Berkeley: University of California, 
1984. 

[13] S. R. Barley and P. S. Tolbert, "Institutionalization and 
structuration: Studying the links between action and institution," 
Organization Studies, vol. 18, pp. 93–117, 1997. 

[14] W. J. Orlikowski, "Using technology and constituting 
structures: A practice lens for studying technology in organiza-
tions," Organization Science, vol. 11, pp. 404-428, 2000. 

[15] E. W. Stein and B. Vandenbosch, "Organizational learning 
during advanced system development: Opportunities and obsta-
cles," Journal of Management Information Systems, vol. 13, pp. 
115–136, 1996. 

[16] J. Sutanto, A. Kankanhalli, and B. C. Y. Tan, "Task coor-
dination in global virtual teams," presented at Twenty-Fifth 
International Conference on Information Systems, Washington, 
DC, 2004. 

[17] J. A. Espinosa, F. J. Lerch, and R. E. Kraut, "Explicit ver-
sus implicit coordination mechanisms and task dependencies: 
One size does not fit all," in Team cognition: Understanding the 
factors that drive process and performance, E. Salas and S. M. 
Fiore, Eds. Washington, DC: APA, 2004, pp. 107-129. 

[18] K. Crowston and E. Kammerer, "Coordination and collec-
tive mind in software requirements development," IBM Systems 
Journal, vol. 37, pp. 227–245, 1998. 

[19] B. Curtis, D. Walz, and J. J. Elam, "Studying the process of 
software design teams," in Proceedings of the 5th International 
Software Process Workshop On Experience With Software 
Process Models. Kennebunkport, Maine, United States, 1990, 
pp. 52–53. 

[20] L. Gasser and G. Ripoche, "Distributed Collective Practices 
and F/OSS Problem Management: Perspective and Methods," 
presented at Conference on Cooperation, Innovation & Tech-
nologie (CITE2003), University de Technologie de Troyes, 
France,, 2003. 

[21] M. A. Rossi, "Decoding the “Free/Open Source (F/OSS) 
Software Puzzle”: A survey of theoretical and empirical contri-
butions," Università degli Studi di Siena, Dipartimento Di 
Economia Politica, Working paper 424, 2004. 

[22] S. Sawyer, "A Social Analysis of Software Development 
Teams: Three Models and their Differences," presented at The 
2000 Americas Conference on Information Systems (AMCIS 
2000), 2000. 

[23] K. J. Stewart and S. Gosain, "Impacts of ideology, trust, 
and communication on effectivness in open source software 
development teams," presented at Twenty-Second International 
Conference on Information Systems, New Orleans, LA, 2001. 

[24] N. Jørgensen, "Putting it all in the trunk: incremental soft-
ware development in the FreeBSD open source project," Infor-
mation Systems Journal, vol. 11, pp. 321–336, 2001. 

[25] E. S. Raymond, "Homesteading the noosphere," First 
Monday, vol. 3, 1998. 

[26] M. Pidd, Tools for thinking modeling management science. 
Chichester: John Wiley and Sons, 1996. 

[27] M. T. Wrightson, "The documentary coding method," in 
Structure of Decision, R. Axelrod, Ed. Princeton: Princeton, NJ, 
1976, pp. 291–332. 

[28] P. Cossette and M. Audet, "Mapping of an idiosyncratic 
schema," Journal of Management Studies, vol. 29, pp. 325–347, 
1992. 



 8 

[29] L. Markoczy and J. Goldberg, "A method of eliciting and 
comparing causal maps," Journal of Management, vol. 21, pp. 
305–333, 1995. 

[30] H. J. Harrington, Business Process Improvement: The 
Breakthrough Strategy for Total Quality, Productivity, and 
Competitiveness. New York: McGraw-Hill, 1991. 

[31] V. Grover and W. J. Kettinger, "Business Process Change: 
Concepts, Methodologies and Technologies." Harrisburg: Idea 
Group, 1995. 

 



 9 

Table 1. Concepts and shared concepts in mental models. 
       # of  identified elements 

Elements 
A B C D 

Definition concepts 40 34 37 10 
Definition concepts repeated It is written in Java (3); [Goal is to] provide search functionality (3); 

[Users are] people who want to add search functionality into their 
applications (3) 

Causal cognitive map concepts 119 153 72 63 
Processes  3 7 3 2 
Processes repeated  Process Initiation (4); member selection (4), bug-fixing-feature adding 

(2);  release kick off (2). 
Unwritten rule (norms) concepts 5 14 5 4 
Unwritten rule concepts repeated Community is important (3); Communication is done on public mailing 

list (3); [New member selection criteria] (3) No formal goals, yet same 
direction (2); not much planning (2) 

Written rule concepts 2 4 3 3 
Written rule concepts repeated Voting for new member selection (4); Accepting patches (3); PMC 

Role (2); no formal roles (2) 

Table 2. Concepts per definitions identified 
       Identified # of elements 

Definition Elements 
A B C D 

Project description/characteristics 7 4 6 1 
Project description/characteristics repeated Written in Java (3); search library (2); easy to use (2) 
Project goals 3 2 2 2 
Project goals repeated Provide search functionality (3); there aren’t specifically 

stated goals, yet we’re driving in the same direction (2) 
Intended users 2 1 1 1 
Intended users repeated People who want to add search functionality into 

applications (3); developers (2) 
Project success and strengths 5 10 7 4 
Project success and strengths repeated Number of users (2), companies using it (2); community 

(2); developers who support it (2); interest at the Apache 
Conference (2); software performance (2) 

Problems faced by the project 2 2 2 1 
Problems faced by the project repeated There aren’t big problems (3) 
Challenges faced by new members 1 1 4 0 
Challenges faced by new members repeated None 
Skills/knowledge needed for development of Lucene Java 2 6 3 1 
Skills/knowledge repeated Information search/retrieval (2); java (2) 
Roles 8 6 10 N/A 
Roles repeated Specialists (2); active committers (2); new committers (2); 

people who support users by answering emails (2) 
Leadership 10 2 2 N/A 
Leadership repeated The project founder will always be the leader (2); Yannik is 

a leader (2); leadership equals sustained contribution (2) 

Table 3. Central concepts per map. 

Map  Concepts (domain scores) Summary of Concept 
Areas 

A Erik is good for a lot of projects (4) [another project leader] is important 
to get others to use Lucene (4) [New members from IBM] can handle lot 
of these things (4) They know how to fit in (3) Somebody ends up 

Boundary Spanning 
 
Selection of & contribution 



 10 

Map  Concepts (domain scores) Summary of Concept 
Areas 

nominating them (3); I have slacked up (3) You want to work on a pro-
ject (3) 

by new members. 
 
Motivation for project 

B One of the most successful open source projects there is (19); there's one 
of two ways to select new members (5) 

Project success 
 
New member selection 

C And then they commit it (3); I don't see any problems (2); It is very 
successful currently (2); Main focus should always be on simplicity (2); 
That's why I learnt Open Source (2); You can trust (2); So that the 
committers have a good feeling that the code is good and it's robust (2); 
Sometimes people of the other [sub]projects get involved in discussions 
and ask us to implement new features in a way to keep files and docs 
compatible (2); It's very simple to get basic search working but it also 
offers more sophisticated stuff for who are familiar with info retrieval 
and search (2) 

Project success, strengths 
and challenges 
 
Process for committing code 
 
Motivation for project 

D I would say [the project is a successful one] (2); There is a great number 
of people involved in the community (2); It either requires you to go 
through lots of learning to get to a level where you are actually not able 
to improve it (2); So, it is kind of complex to start (2); The barrier to 
enter is kind of low (2); It is not a project that you can just jump in and 
do all the hard stuff (2); Contribution to positive group atmosphere, re-
solving conflicts, things like that (2); There are so many ways you can 
contribute (2); So even if you're very entry-level Lucene guy, you can 
contribute by helping others (2)  

Project success & strengths 
 
Community & contribution 
 
Challenges for new mem-
bers 
 
Group Maintenance 

Table 4. Number of concepts for each set per map. 

# of concepts 
Sets 

A B C D 

Challenges  1 6 10 4 
Change in Project 6 2 4 3 
Community 55 23 7 7 
Coordination 4 5 9 2 
Goals 5 2 4 1 
History 7 3 2 3 
Leadership 16 2 3 3 
Membership 20 19 9 3 
Success/Strengths 2 29 17 3 

Table 5. Activities per processes described. 
# of activities 

Processes 
A B C D 

Initiation 4 4 3 4 
Rulemaking - 8 - - 
Bug fixing- Feature adding - 10 3 - 
Member Selection 6 5 4 2 
Planning - 4 - - 
Release kick off 2 3 - - 
Apache Incubation Process - 4 - - 

 


