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Introduction

In the field of computer science, as well as in the informa-
tion systems domain, artificial intelligence constitutes one 
of the most rapidly growing streams of research (Jordan & 
Mitchell, 2015). Interest is rising because new technologi-
cal innovations enable the development of productive arti-
ficial intelligence solutions that provide compelling ben-
efits in various fields of application. Artificial intelligence 
systems have reached a level of productivity where they do 
have the potential to reduce business costs, enhance business 
analytics, and ultimately improve the quality and effective-
ness of managerial decisions. As a consequence, artificial 
intelligence has evolved from a field of research to a viable 
technology that is used in a wide array of application fields 
(Jordan & Mitchell, 2015). In fact, artificial intelligence 

developments are setting the stage for a paradigm shift in the 
workplace: According to PwC, 72% of business executives 
say that artificial intelligence will give them a competitive 
advantage in the future (Bothun et al., 2017). Many repetitive 
and simple tasks that were typically performed by humans 
are now being automated by artificial intelligence bundled 
with other technologies, such as cloud systems, augmented 
reality, (social) robots, IoTs, and wearables. As a result, the 
ratio of tasks executed by machines to humans is about to 
shift dramatically (WEF, 2020). As a consequence, there is 
a broad consensus that artificial intelligence has the potential 
to deliver huge economic benefits (Jordan & Mitchell, 2015).

Despite these recent advances, artificial intelligence 
systems still exhibit major deficits (Attenberg et al., 2015). 
Without the ongoing supervision of humans, systems can 
make mistakes or fail completely. For example, chatbots, a 
form of conversational agents – a subset of artificial intel-
ligence—if poorly designed, can be as biased as humans. 
Recently, a Microsoft chatbot called “Tay” was made into a 
racist, sexist and antisemitic chatbot in less than 24 h after 
being available for interactions with real users online. This 
highlighted chatbots’ vulnerability to manipulation. In addi-
tion to that, when learned models are incomplete, there is 
a mismatch between training and test distributions, or rare 
cases such as outliers might be both highly informative and 
relevant (Lakkaraju et al., 2017). Especially when it comes 
to critical tasks such as driver assistance or medical diagnos-
ing, failures of these systems will have serious implications 
on the well-being of humans, thus resulting in a negative 
impact of the users’ trust towards the system.

To address these challenges, recent research in the field 
focuses on the design of so-called Hybrid Intelligence Sys-
tems (HIS), characterized by a close partnership between 
humans and machines. In this partnership, different facets, 
such as task specification, creation of incentives, task alloca-
tion, quality assessment, task aggregation, and compensation 
mechanisms have to be considered. In that, HIS constitute a 
special form of digital platforms, in which socio-technical 
interactions are coordinated virtually (Kenney & Zysman, 
2016). Articles have concentrated on the technological 
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issues that are related to the development of HIS and highlight 
the novel character of this concept (Cheng & Bernstein, 2015; 
Kamar, 2016a, b). Additional insights into the relationships 
between design decisions, actors’ behavior, and business 
outcomes therefore constitute a promising avenue for fur-
ther research that deserves to be addressed by researchers 
and practitioners. The time is now to call for theoretical and 
empirical underpinnings on how hybrid intelligence can be 
utilized. As Electronic Markets contributed significantly to 
developing our understanding on how other kinds of artifi-
cial intelligence systems generate value within business net-
works (Dellermann et al., 2019b; Kühl et al., 2020; Neuhofer 
et al., 2020), we are glad that, in this tradition, we can bundle 
papers on a relevant topic: Hybrid Intelligence in Business 
Networks.

Positioning hybrid intelligence 
in IS literature

Instead of focusing on the development of a general artifi-
cial intelligence, recent research in the field focuses on the 
design of HIS (Dellermann et al., 2019a). A hybrid system 
allows the integration of human input into an artificial intel-
ligence system throughout the system’s life cycle in order 
to develop, complement, and evaluate the system’s capabili-
ties. By combining the complementary strengths of human 
intelligence and artificial intelligence both will behave 
more intelligent than each of the two could be in separation 
(Kamar, 2016a, b). In this regard, the human input can help 
an artificial intelligence system to avoid mistakes and the 
human feedback can be used to realize optimized learning 
cycles as the machine is able to continuously learn from its 
human partner. In that, the issue is not which is ‘better’, the 
issue is how you can create synergy between human intel-
ligence and artificial intelligence so that they outperform the 
separate entities together as a team/symbiotic entity. Today, 
most artificial intelligence systems benefit from human input 
only during the development or training cycles. In these 
phases, the input of software developers and experts is used 
in order to train the system. However, once deployed within 
the learning cycle, human input that the system can use in 
order to improve its decisions is often minimal. But without 
ongoing human input, the performance of the system will 
not be able to overcome biases and limitations that have been 
implemented in the course of the system development (Engel 
et al., 2021a, b) and indeed, performance may decrease con-
tinuously due to the changing parameters of the system’s 
tasks.

Human input can be used to help a system avoid mistakes 
and to realize optimized learning cycles as the machine is 
able to continuously learn from its human partner. In that, 
the issue is not which kind of intelligence is ‘better’: the 

issue is how to create synergy between human intelligence 
and artificial intelligence so that they outperform the sepa-
rate entities together as a team/symbiotic entity. Against 
this backdrop, hybrid intelligence aims at the combination 
of complementary heterogeneous intelligences (i.e. human 
and artificial agents) into a socio-technological ensemble 
that is able to overcome the current limitations of (artificial) 
intelligence (Engel et al., 2021a, b). This approach is nei-
ther focusing on human intelligence in the loop of artificial 
intelligence nor automating simple tasks through machine 
learning. Rather, the emphasis lies on solving complex prob-
lems using the deliberate allocation of tasks among differ-
ent heterogeneous algorithmic and human agents. Both the 
human and the artificial agents of such systems can then 
co-evolve by learning and achieve a superior outcome on 
the system level.

Research streams in hybrid intelligence 
literature

As of now, research in the field of hybrid intelligence can be 
clustered along three different streams.

Development of hybrid intelligence systems

When it comes to designing HIS, research in the field exam-
ined how the state of a system as well as its input require-
ments can be presented in a way that human helpers can 
understand and process them accordingly. In HIS, this prob-
lem corresponds to the challenge of task design to elicit high 
quality work from the human helpers. For example, Wang 
et al. (2012) explored different task designs to collect seman-
tic input so that the results can be used in order to train 
the system for language understanding. In another study, 
Mitchell et al. (2014) investigated how human helpers can 
participate in the language generation process of a spoken 
dialog system. A second stream of research, examines how 
the noise of the input of human helpers affects interactions 
between humans and machines. Ipeirotis (2010) developed 
algorithmic models that are able to learn about the exper-
tise and knowledge of human workers. These models are 
able to correct individual mistakes as long as the individual 
noise of the workers is independent. However, when a spe-
cific bias can be found in a whole population of workers, 
these systems may fail when trying to achieve a certain task 
(Kamar et al., 2015). As a consequence, existing research 
has identified the need for models that can successfully learn 
about the task-dependent biases and correct them. Third, 
research has examined the fluidity of human capabilities. 
While computational input that is used in artificial intel-
ligence systems can only be used for a predefined training 
scenario, human input can be extended to a wide range of 
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tasks. Consequently, studies have examined whether human 
helpers can acquire new capabilities that are used within 
different training tasks. Doroudi et al. (2016) performed a 
series of controlled studies to measure the effectiveness of 
different training strategies for improving the performance of 
human helpers in different settings. These training strategies 
included expert examples, which require additional work 
from a domain expert, and peer validation, which asks work-
ers to validate the work of their peers as a form of training.

Design of hybrid intelligence systems

The second research stream covers the design of the col-
laboration process between humans and machines. In the 
context of collaborative processes, machine-learning-based 
systems could not only actively participate in solving given 
problems, but also act as facilitators within the collaboration 
process (Seeber et al., 2020). For example, Smart Personal 
Assistants (SPAs) are expected to increase the productivity 
of workers, by adapting to their tasks and their individual 
working routines (Knote et al., 2019, 2021). Within private 
environments, SPAs are designed to increase the user’s well-
being and comfort. As a consequence, SPAs are becoming 
increasingly popular in both domains. However, due to the 
high amount of contextualization that is needed to provide a 
flawless user experience, creation of a consistent collabora-
tion process between human and system is challenging for 
designers (Maedche et al., 2019). As a result of these simul-
taneous design efforts, conventional approaches towards 
interaction design often fall short, as design iterations based 
on prototyping and user testing are difficult to realize (Lee 
et al., 2017). As a result, previous research has provided 
different design approaches for the development and contex-
tualization of comprehensive SPAs for a variety of hybrid 
scenarios (Feine et al., 2019; Følstad & Brandtzæg, 2017; 
Wambsganss et al., 2020; Winkler et al., 2020a, b).

In addition, research in this stream also investigates how 
new forms of human–computer interactions with conversa-
tional interfaces using natural language, either written or 
spoken, could evolve (Poser & Bittner, 2020). Nowadays, 
conversational interfaces such as Apple’s Siri, Microsoft’s 
Cortana, Amazon’s Alexa, or Google’s Assistant are ubiq-
uitous, and they are used in several areas, such as customer 
service, health care or education (Janssen et al., 2020). For 
example, research by Winkler et al. (2020b), Wambsganss 
et al. (2021) and (Winkler et al. 2021) has shown that the 
use of SPAs in educational settings has a positive impact 
on different learning outcomes, such as problem solving or 
argumentation skills. Further, research in this stream also 
analyzes how HIS can be employed to foster innovation 
in various value creation processes (Elshan & Ebel, 2020; 
Elshan et al., 2021; Engel & Ebel, 2019).

Management of hybrid intelligence systems

When analyzing research and practice in the field of HIS, it 
becomes evident that there are frequent examples in which 
systems do not achieve the desired results. Reasons for these 
failures can be found in all elements of a HIS. Due to a lack 
of expertise, the human partners may not be able to provide 
the desired input or deliberately deliver wrong results due 
to insufficient motivation. On the artificial intelligence side, 
there are examples in which the system is unable to evalu-
ate the delivered input correctly and fails to integrate it into 
its own decision-making processes. Finally, human partners 
are not provided with a suitable platform that enables them 
to perform a task quickly and easily, or the workflows on 
the platform are failing to create incentive structures that 
motivate and engage human helpers without unintentionally 
affecting their performance.

Current research has addressed these issues by examin-
ing how the noise of the input of human helpers is affecting 
interactions between humans and machines (Ipeirotis, 2010) 
or whether human assistants can acquire new skills by par-
ticipating in certain training tasks (Doroudi et al., 2016), as 
mentioned above. Also, there are studies that investigate how 
different incentive structures are influencing the trade-offs 
in quality and effort in HIS (Mao et al., 2013). Moreover, 
research has examined technological features for allocating 
resources when assigning workers for certain tasks (Kamar 
et al., 2012).

Finally, the transfer of certain degrees of cognition from 
humans to machines and the increasing rise of tasks that are 
amenable to cognitive automation (Engel et al., 2021a, b) 
will also have a huge impact on the future of work (Card & 
Nelson, 2019). This circumstance will require organizations 
to adapt structures and organizational practices (Engel et al., 
2021a, b) and align the new technology with a comprehen-
sive strategy regarding the future of work (Zarkadakis et al., 
2016). Here, hybrid intelligence will become increasingly 
important, as there will be an increasing number of tasks and 
processes that are performed neither purely by humans nor 
purely by cognitive machines, and where symbiotic entities 
– the combination of human and machine agents—achieve 
higher performance together than when they act separately 
(Dellermann et al., 2019a; Engel et al., 2021a, b).

Papers in this special issue

Although a considerable amount of exploration has been 
conducted regarding the collaboration between human intel-
ligence and artificial intelligence, the breadth and scope 
for dialogue and experimentation needs to be broadened. 
This special section provides a place for such dialogue and 
support of a diverse community interested in taking the 
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challenge further. The three papers that have been selected 
follow the outlined research streams and provide an excellent 
starting point for further research on hybrid intelligence.

The first paper, “Human–Machine Collaboration in 
Online Customer Service – a Long-Term Feedback-Based 
Approach” by Roland Graef, Mathias Klier, Kilian Kluge 
and Jan Felix Zolitschka (2021), deals with the rising 
expectations of customers, who expect to be able to con-
tact a company via e-mail, chat, and social media platforms, 
while demanding ever shorter response times. This chang-
ing demand has considerably contributed to the need for 
automated approaches supporting employees in online 
customer service. Since automated approaches still strug-
gle to meet the challenge to fully grasp the semantics of 
texts, hybrid approaches combining the complementary 
strengths of human and artificial intelligence show great 
potential for assisting employees. Against this background, 
the authors follow a design-oriented approach and develop 
an adapted textual Case-Based Reasoning (CBR) approach 
that integrates employees’ feedback on semantic similarity. 
Using a real-world data set from the popular service website 
Quora, the authors demonstrate the practical applicability 
and evaluate their approach regarding performance in online 
customer service. Their novel approach surpasses human-
based, machine-based, and hybrid approaches in terms 
of effectiveness due to a refined retrieval of semantically 
similar customer problems. It is further superior in terms 
of efficiency, reducing the average time required to solve a 
customer problem.

The second paper, “How Perceptions of Intelligence and 
Anthropomorphism Affect Adoption of Personal Intelligent 
Agents” by Sara Moussawi, Raquel Benbunan-Fich and 
Marios Koufaris (2021), investigates to what extent users’ 
perceptions of intelligence and perceptions of anthropo-
morphism influence their perceptions of usefulness, ease of 
use, enjoyment, initial trust, and intention to use. A personal 
intelligent agent (PIA) is a system that acts intelligently to 
assist a human using natural language. Examples include Siri 
and Alexa. These agents are powerful computer programs 
that operate autonomously and proactively, learn and adapt 
to change, react to the environment, complete tasks within a 
favorable timeframe, and communicate with the user using 
natural language to process commands and compose replies. 
PIAs are different from other systems previously explored 
in Information Systems (IS) due to their personalized, intel-
ligent, and human-like behavior. Drawing on research in IS 
and Artificial Intelligence, the authors build and test a model 
of user adoption of PIAs leveraging their unique characteris-
tics. Analysis of data collected from an interactive lab-based 
study for new PIA users confirms that both perceived intel-
ligence and anthropomorphism are significant antecedents of 
PIA adoption. The findings contribute to the understanding 

of a quickly-changing and fast-growing set of technologies 
that extend users’ capabilities.

The third paper, “Hybrid Intelligence in Hospitals: 
Towards a Research Agenda for Collaboration and Team-
Building” by Milad Mirbabaie, Stefan Stieglitz and Nicholas 
R. J. Frick (2021), investigates how the implementation of 
hybrid intelligence affects the quality of organizational pro-
cesses. Successful collaboration between clinicians is par-
ticularly relevant regarding the quality of the care process. 
In this context, the utilization of hybrid intelligence, such 
as conversational agents (CAs), is a reasonable approach for 
the coordination of diverse tasks. While there is a great deal 
of literature involving collaboration, little effort has been 
made to integrate previous findings and evaluate research 
when applying CAs in hospitals. By conducting an extended 
and systematic literature review and semi-structured expert 
interviews, the authors identified four major challenges and 
derived propositions where in-depth research is needed: 1) 
audience and interdependency; 2) connectivity and embodi-
ment; 3) trust and transparency; and 4) security, privacy, and 
ethics. The results are helpful for researchers as we discuss 
directions for future research on CAs for collaboration in a 
hospital setting enhancing team performance. Practitioners 
will be able to understand which difficulties must be consid-
ered before the actual application of CAs.

Together, the three papers in this special issue represent 
important advances in the scientific discourse on HIS in 
business networks. We warmly recommend them to your 
reading. We would like to thank the editors of Electronic 
Markets to make this special issue possible and the review-
ers of all submitted papers for their diligence in providing 
constructive feedback to the authors.
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