Crowston, K., Jullien, N., & Ortega, F. (2013). Is Wikipedia Inefficient? Modelling Effort and Participation in Wikipedia. In Forty-sixth Hawai’i International Conference on System Sciences (HICSS-46). http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1960696
Crowston, K., & Prestopnik, N. (2013). Motivation and data quality in a citizen science game: A design science evaluation. Forty-Sixth Hawai’i International Conference on System Sciences (HICSS-46).
Østerlund, C., & Crowston, K. (2013). Boundary-Spanning Documents in Online FLOSS Communities: Does One Size Fit All? In Forty-sixth Hawai’i International Conference on System Sciences (HICSS-46).
Crowston, K., Jullien, N., & Ortega, F. (2013). Sustainability of Open Collaborative Communities: Analyzing Recruitment Efficiency. Technology Innovation Management Review, 20–26. http://timreview.ca/article/646
Crowston, K., Deltour, F., & Jullien, N. (2013). Open Source Software Adoption: A Technological Innovation Perspective. In Association Information et Management. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2244222
Prestopnik, N., Souid, D., Mackay, W. E., Brewster, S., & Bødker, S. (2013). Forgotten island: A story-driven citizen science adventure. CHI ’13 Extended Abstracts on Human Factors in Computing Systems, 2643–2646. https://doi.org/10.1145/2468356.2479484
Hassman, K. D., Mugar, G., Østerlund, C., & Jackson, C. (2013). Learning at the Seafloor, Looking at the Sky: The Relationship Between Individual Tasks and Collaborative Engagement in Two Citizen Science Projects. Computer Supported Collaborative Learning .
Kittur, A., Nickerson, J. , V, Bernstein, M. S., Gerber, E., Shaw, A., Zimmerman, J., Lease, M., & Horton, J. (2013). The future of crowd work. Proceedings of the 2013 Conference on Computer Supported Cooperative Work, 1301–1318.
Varian, H. R. (2013). Beyond Big Data. In NABE Annual Meeting. http://people.ischool.berkeley.edu/~hal/Papers/2013/BeyondBigDataPaperFINAL.pdf
Phua, C., Lee, V., Smith, K., & Gayler, R. (2013). A Comprehensive Survey of Data Mining-based Fraud Detection Research. https://arxiv.org/ftp/arxiv/papers/1009/1009.6119.pdf